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class of games — Separable Hidden-Strongly-Convex-

Player 1 (0) Player 2 (¢)
Rise of Multi-Agent Learning Applications Proof Outline
| _ | » P P | o
e Many emerging applications — such as adversarial training, e Choose Gaussian random initializations (0, ¢;) such that the
AT alignment, and robust optimization — can be framed as Jacobian for networks F' and G is ‘well-conditioned’ w.h.p.
zero-sum games between neural nets with Nash equilibria o Define radius R of a Buclidean ball B((6,, ¢), R) such that
(NE) capturing the desirable system behavior. the Jacobian remains well-conditioned within it.
® Much of the remarkable progress stems from the capacity of /} e Compute path length bound of AItGDA iterates (¢, ¢;) in
deep networks to operate effectively in environments with terms of P, a special Lyapunov potential Py at time ¢ = 0.
large, often Czn.tgmous, state ail;l actlonkspace d(e.g. Go,f e F'ind sufficient conditions on hidden layer width of networks
autonomous driving, Texas Hold'em Poker, and StarCraft 11). S R S R F', G to ensure this path length is smaller than the ball radius
R.
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— e wr_E mal = | — Figure 2:An AltGDA trajectory of players’ latent space strategies in an {y-regularized hidden game of Rock-Paper-Scissors.
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Figure 1:/llustration of a maze environment where each agent must
reason over a vast space of action sequences. Instead of explicitly
constructing and searching the full decision tree, a neural net-
work implicitly encodes both the value of paths and the policy for
navigation, learning an effective strategy dynamically without ever
uncovering the complete structure of the maze.

Question At The Heart Of Our Work

How can two neural networks be designed and
trained to compute a solution to a zero-sum
game?

More Specifically...

How many parameters should the two neural

networks have so that vantlla methods like
AltGDA can converge to a saddle point?

From MIN to MIN-MAX

¢ Prior works primarily focus on degree of overparameterization
needed for gradient descent to reach global minima (classical
MIN setting) [1].

o Moreover, making Gradient Descent (GD) analogs ‘work’ for
MIN-MAX problems is hard due to ‘cycling’ behaviour.

e Hence, focus on a class of min-max games that capture as
many of the current deep learning applications as possible
and yet avoid cycles.

e Hidden Games!

(07, ") € arg min argmax B zp,,, [L(F(2;0), G (25 0))]

e The MIN-MAX problem above is called a
hidden-convex-hidden-concave game if the loss L is convex
(concave) in F'(+;0) (G(+;0)).

e Note that, in general, the loss L is non-convex (non-concave)
in ¢ (o).

e Captures various applications such as GANs, Parametric
Distributionally Robust Optimization, Robust Reinforcement
Learning, Domain Invariant Representation Learning (DIRL).

e Some known convergence results when the MIN-MAX objective
is regularized [2] or satisfies two-sided Polyak-t.ojasiewicz

(Pt) condition [3].

min F(0) = H(c(0)) (%)

HeO

e This problem is (., pt7)-hidden convex if the function H is
w -strongly-convex (puy > 0) and the map c is invertible
with the inverse mapping ¢ ' as 1/u.~Lipschitz.

¢ The minimum singular value of the Jacobian for mapping
c(0) (o2 (J(0))) in Equation (%) above corresponds to the

constant pu..
Fact. (4] (i, pog)-hidden-strongly-convex function satisfies Pt.-
condition with modulus pgu?. (Recall: A function f is said to
satisfy u-PY-condition if it satisfies the following: f(x)—f(2") <
iHV f(x)]|5 where 2 is the global minimizer of f.)

Ensuring Hidden (Strong) Convexity and Saddle-Point Convergence

o Ensure 02, (J(0;)) >0 Vt € {0,..., T} = objective satisfies Pt-condition Vt < T.

min

o Adapt analysis of AItGDA [3] to prove saddle-point convergence.

Our Results: Input Games

min =~ max  L(F(xazice; 0), G(TBop; O)) (@)
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e Parameters ¢/, ¢ are fixed.
e Optimizing over inputs.

e Fixample: adversarial example generation.

8§Theorem 1. For bilinear objectives (payoff matrix A) with e—
(>-regularization, w.h.p. AItGDA converges to e-saddle point it
the Gaussian-randomly-initialized mappings F' and G (1-hidden-
layer neural networks) satisfy

), x pOZy(l/wz'dthF/G)
Fe T ? ( Omax(A)

Our Results: Neural Games

min max B yp,,, [L(F(2;0), G(a'; 0)) (m)

e Optimize over parameters ¢/, ¢ for given data.

e GANs, DIRL, etc.

3Theorem 2. For separable hidden-strongly-convex-strongly-
concave min-max objectives with bilinear coupling, w.h.p. Alt-
DA converges to a saddle point if the Gaussian-random initial-

izations and hidden-layer width of the networks F' and (G satisty
1
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Strongly-Concave with Bilinear Coupling.

e Results hold for shallow neural networks with differentiable
activation functions (e.g. GeLU).

Future Work

e The width (and hence the overparameterization) condition on
the shallow neural networks is a sufficient condition. Is it
also necessary?

e Analysis assumes differentiable activation functions. Extend
to non-differentiable activation functions (e.g. ReLU).

e Connect results with those for extensive-form games.
e Extend to Hidden MVIs for polyhedral settings.
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