
Solving Neural Min-Max Games:
The Role of Architecture, Initialization & Dynamics

Deep Patel and Emmanouil-Vasileios Vlatakis-Gkaragkounis
Department of Computer Science, University of Wisconsin-Madison, WI, USA

Rise of Multi-Agent Learning Applications

• Many emerging applications — such as adversarial training,
AI alignment, and robust optimization — can be framed as
zero-sum games between neural nets with Nash equilibria
(NE) capturing the desirable system behavior.

• Much of the remarkable progress stems from the capacity of
deep networks to operate effectively in environments with
large, often continuous, state and action space (e.g. Go,
autonomous driving, Texas Hold’em Poker, and StarCraft II).

Figure 1:Illustration of a maze environment where each agent must
reason over a vast space of action sequences. Instead of explicitly
constructing and searching the full decision tree, a neural net-
work implicitly encodes both the value of paths and the policy for
navigation, learning an effective strategy dynamically without ever
uncovering the complete structure of the maze.

Question At The Heart Of Our Work

How can two neural networks be designed and
trained to compute a solution to a zero-sum

game?

More Specifically...

How many parameters should the two neural
networks have so that vanilla methods like
AltGDA can converge to a saddle point?

From MIN to MIN-MAX

• Prior works primarily focus on degree of overparameterization
needed for gradient descent to reach global minima (classical
MIN setting) [1].

• Moreover, making Gradient Descent (GD) analogs ‘work’ for
MIN-MAX problems is hard due to ‘cycling’ behaviour.

• Hence, focus on a class of min-max games that capture as
many of the current deep learning applications as possible
and yet avoid cycles.

• Hidden Games!

Figure 2:An AltGDA trajectory of players’ latent space strategies in an ℓ2-regularized hidden game of Rock-Paper-Scissors.

Hidden Games

(θ⋆, ϕ⋆) ∈ arg min
θ∈Rm

arg max
ϕ∈Rn

E(x,x′)∼Pxx′ [L(F (x; θ), G(x′; ϕ))]

• The MIN-MAX problem above is called a
hidden-convex-hidden-concave game if the loss L is convex
(concave) in F (·; θ) (G(·; ϕ)).

• Note that, in general, the loss L is non-convex (non-concave)
in θ (ϕ).

• Captures various applications such as GANs, Parametric
Distributionally Robust Optimization, Robust Reinforcement
Learning, Domain Invariant Representation Learning (DIRL).

• Some known convergence results when the MIN-MAX objective
is regularized [2] or satisfies two-sided Polyak-Łojasiewicz
(PŁ) condition [3].

Hidden Convex Optimization

min
θ∈Θ

F (θ) := H(c(θ)) (⋆)

• This problem is (µc, µH)-hidden convex if the function H is
µH -strongly-convex (µH ≥ 0) and the map c is invertible
with the inverse mapping c−1 as 1/µc-Lipschitz.

• The minimum singular value of the Jacobian for mapping
c(θ) (σ2

min(J(θ))) in Equation (⋆) above corresponds to the
constant µc.

Fact. [4] (µc, µH)-hidden-strongly-convex function satisfies PŁ-
condition with modulus µHµ2

c. (Recall: A function f is said to
satisfy µ-PŁ-condition if it satisfies the following: f (x)−f (x⋆) ≤
1

2µ∥∇f (x)∥2
2 where x⋆ is the global minimizer of f .)

Ensuring Hidden (Strong) Convexity and Saddle-Point Convergence

• Ensure σ2
min(J(θt)) > 0 ∀t ∈ {0, . . . , T} =⇒ objective satisfies PŁ-condition ∀t ≤ T .

• Adapt analysis of AltGDA [3] to prove saddle-point convergence.

Our Results: Input Games

min
xAlice∈DF

max
xBob∈DG

L(F (xAlice; θ), G(xBob; ϕ)) (�)

• Parameters θ, ϕ are fixed.
• Optimizing over inputs.
• Example: adversarial example generation.

§Theorem 1. For bilinear objectives (payoff matrix A) with ϵ−
ℓ2-regularization, w.h.p. AltGDA converges to ϵ-saddle point if
the Gaussian-randomly-initialized mappings F and G (1-hidden-
layer neural networks) satisfy

σ2
F/G = Θ̃

(
poly(1/widthF/G)

σmax(A)

)

Our Results: Neural Games

min
θ∈Rm

max
ϕ∈Rn

E(x,x′)∼Pxx′ [L(F (x; θ), G(x′; ϕ))] (■)

• Optimize over parameters θ, ϕ for given data.
• GANs, DIRL, etc.
§Theorem 2. For separable hidden-strongly-convex-strongly-
concave min-max objectives with bilinear coupling, w.h.p. Alt-
GDA converges to a saddle point if the Gaussian-random initial-
izations and hidden-layer width of the networks F and G satisfy

σ1,F/G · σ2,F/G ≲
1√

din,F/G · widthF/G

widthF/G = Ω̃
(

µ2
θ/ϕ

n3

din,F/G

)

Proof Outline

• Choose Gaussian random initializations (θ0, ϕ0) such that the
Jacobian for networks F and G is ‘well-conditioned’ w.h.p.

• Define radius R of a Euclidean ball B((θ0, ϕ0), R) such that
the Jacobian remains well-conditioned within it.

• Compute path length bound of AltGDA iterates (θt, ϕt) in
terms of P0, a special Lyapunov potential P0 at time t = 0.

• Find sufficient conditions on hidden layer width of networks
F , G to ensure this path length is smaller than the ball radius
R.

Conclusion

• To our knowledge, first overparameterization condition
(sufficient condition) for saddle-point convergence in a special
class of games – Separable Hidden-Strongly-Convex-
Strongly-Concave with Bilinear Coupling.

• Results hold for shallow neural networks with differentiable
activation functions (e.g. GeLU).

Future Work

• The width (and hence the overparameterization) condition on
the shallow neural networks is a sufficient condition. Is it
also necessary?

• Analysis assumes differentiable activation functions. Extend
to non-differentiable activation functions (e.g. ReLU).

• Connect results with those for extensive-form games.
• Extend to Hidden MVIs for polyhedral settings.
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