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Abstract

Label noise is inevitable when employing supervised learning based algorithms in prac-

tice. In many applications involving neural networks one needs a large training set and

the process of obtaining such labelled data (e.g., crowd sourcing, employing automatic

web searches etc.) often lead to training set labels being noisy. In the context of neural

networks, it is demonstrated that standard algorithms (such as minimizing empirical risk

with cross entropy loss function) are susceptible to overfitting in the presence of noise.

This thesis explores the problem of robust learning under label noise.

There are many approaches proposed for designing learning algorithms that are robust

to label noise. We look at the sample reweighting methods wherein one tries to assign

weights to different samples so that samples with noisy labels are assigned small or zero

weights. This can be viewed as a kind of ‘curriculum learning’ wherein the clean (easy)

samples are to be given more weightage than the corrupted (hard) samples. Based on

such heuristics, we propose a simple, adaptive curriculum-based learning strategy called

BAtch REweighting (BARE). The statistics of loss values of all samples in a mini-

batch are used to decide which samples in each mini-batch would be allowed to update

the weights. This yields an adaptive curriculum where the sample selection is naturally

tied to current state of learning. Our algorithm does not need any clean validation data,

needs no knowledge at all of the noise rates and also does not have any hyperparameters.

We empirically demonstrate the effectiveness of our algorithm on benchmark data sets

such as MNIST, CIFAR-10 and Clothing-1M, and show that it is much more efficient in

terms of time and has as good or better robustness compared to other current algorithms

based on sample reweighting.

We next consider another aspect of the susceptibility of deep networks to label noise.

It is shown recently that deep networks trained on data with random labels can memorize
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the data in the sense of being able to drive the training error to zero. This phenomena

of memorization is confirmed by multiple studies and it is seen that none of the standard

regularization techniques can mitigate it. This depends on the kind of local minima that

SGD can take the network to. Hence it could depend on the topography of the empirical

risk that is minimized. Thus, the choice of loss function can be critical in determining

this. However, none of the studies on memorization investigate the role of loss function.

We present extensive empirical results to show that while standard loss functions like

CCE and MSE result in memorization, symmetric loss functions such as RLL can resist

such memorization to a good degree. We formally define what ‘resisting memorization’

means and then provide some theoretical justifications for the empirical results.
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learning, memorization

vii



Contents

Acknowledgements i

Declaration iii

Publications based on this Thesis iv

Abstract v

Keywords vii

List of Symbols xi

List of Abbreviations xii

1 Introduction 1
1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Risk Minimization Framework . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Learning under Label Noise . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Why is it important? . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Robust Risk Minimization . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Approaches for tackling label noise . . . . . . . . . . . . . . . . . . . . . 9
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Learning under Label Noise - A Review 12
2.1 Label Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Label Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Robust Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Loss Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Sample Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Adaptive Sample Selection 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



CONTENTS ix

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Batch Reweighting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Adaptive Curriculum through Batch Statistics . . . . . . . . . . . 31
3.3 Experiments on Noisy Dataset . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Role of Loss Function in Robust Learning 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Role of loss function in resisting memorization: Empirical Results . . . . 53
4.3 Robustness of Symmetric Loss Functions . . . . . . . . . . . . . . . . . . 59
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusions 65

References 69



List of Figures

3.1 Test Accuracies - MNIST - Symmetric ((a) & (b)) & Class-conditional
((c)) Label Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Test Accuracies - CIFAR10 - Symmetric ((a) & (b)) & Class-conditional
((c)) Label Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Label Precision - MNIST - Symmetric ((a) & (b)) & Class-conditional
((c)) Label Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Label Precision - CIFAR10 - Symmetric ((a) & (b)) & Class-conditional
((c)) Label Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Label Recall - Symmetric ((a) & (b)) & Class-conditional ((c)) Label Noise 44
3.6 (a): Sample fraction values for η = 0.5 (symmetric noise) on MNIST, (b):

Sample fraction values for η = 0.7 (symmetric noise) on CIFAR-10, (c):
sample fraction values for η = 0.4 (class-conditional noise) on CIFAR-10 . 45

3.7 Test accuracies when estimated (symmetric) noise rate, η = 0.5, and true
noise rate, η = 0.7, for (a): MNIST & (b): CIFAR-10 . . . . . . . . . . . 45

4.1 Training set accuracies for ResNet-32 ((a) & (b)) & Inception-Lite ((c)
& (d)) trained on CIFAR-10 with CCE and MSE losses for for η ∈
{0., 0.2, 0.4, 0.6} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Training set accuracies for ResNet-18 trained on MNIST with CCE and
MSE losses for different levels of label noise . . . . . . . . . . . . . . . . 56

4.3 Training set accuracies for networks trained on CIFAR-10 ((a) & (c)) &
MNIST ((b)) with RLL for η ∈ {0., 0.2, 0.4, 0.6} . . . . . . . . . . . . . . 56

4.4 J1 and J2 accuracies for Inception-Lite ((a) & (b)) & ResNet-18 ((c) & (d))
trained on CIFAR-10 and MNIST resp. for η ∈ {0., 0.2, 0.4, 0.6} (Solid
lines show J1 accuracy; dashed lines show J2 accuracy) . . . . . . . . . . 58

4.5 Train. accuracy and J1 & J2 accuracies for Inception-Lite ((a) & (c))
& ResNet-18 ((b) & (d)) trained on CIFAR-10 and MNIST resp. for
η ∈ {0., 0.2, 0.4, 0.6} (Solid lines show J1 accuracy; dashed lines show J2
accuracy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Inception-Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



List of Symbols

R Set of real numbers

R+ Set of non-negative real numbers

R++ Set of positive real numbers

Z Set of integers

Rn Cartesian product of R with itself n times

Rn
+ Cartesian product of R+ with itself n times

1 Vector, of appropriate size, with all elements equal to 1

0 Vector, of appropriate size, with all elements equal to 0

ei Vector, of appropriate size, with ith element equal to 1 and 0

for all other elements

v ≥ 0 Term wise inequality for vector v ∈ Rn

[M]ij ij-th element of matrix M

∅ Empty set

h Classifier function

[K] {1, 2, . . . , K} where K ∈ Z+

∇f Gradient of f(x) : Rn → R, , i.e., the ith component of ∇f
is ∂f

∂xi

xi



List of Abbreviations

SVM Support Vector Machine

DT Decision Tree

SLN Symmetric Label Noise

CCLN Class-Conditional Label Noise

NULN Non-Uniform Label Noise

CCE Categorical Cross-Entropy Loss

MSE Mean Squared Error Loss

MAE Mean Absolute Error Loss

NN Neural Networks

CoT Co-Teaching

CoT+ Co-Teaching+

MR Meta-Ren

MN Meta-Net

CL Curriculum Loss

BARE BAtch REweighting

RLL Robust Log Loss

xii



Chapter 1

Introduction

The supervised classification problem in Machine Learning is one of the most widely

studied problems with a plethora of applications. Typically, one has access to a labelled

training set that is used to train a model (which is referred to as a classifier). This is

also called supervised learning as one has some patterns along with corresponding labels

that indicate which category the pattern belongs to. In recent years the neural network

models have been spectacularly successful in many classification applications. However,

these models need a large training set of labelled patterns. While creating such large

scale datasets, often, there are labelling errors owing to automated labelling processes,

crowdsourced annotations, human errors, etc. Hence, in these cases, the training set

contains labelling errors. Thus the problem of robust learning under label noise is very

relevant and needs to be studied in detail. This thesis presents a study on some aspects

of robust learning under label noise. In this chapter we provide a general introduction

to supervised learning and describe the problem of robust learning under label noise.

1.1 Supervised Learning

In supervised machine learning, we are given a training set of i.i.d. samples S =

{(xi, yi), i = 1, · · · ,m}, xi ∈ X , yi ∈ Y , drawn from some underlying distribution,

D on X ×Y . The goal is to learn a function, f : X → Y . In particular, consider the case

of multi-class classification problem, i.e., Y = {1, 2, . . . , K} where K ∈ Z+ denotes the

1



CHAPTER 1. INTRODUCTION 2

number of cateogries or classes1. Here, xi’s (∈ X ⊆ Rn) are referred to as patterns or

features and yi’s as labels. What’s often done for classification problems is that one first

learns a score function, f : X →M where M⊆ RK . Then, a mapping function is used

to predict a label for the pattern using the corresponding score. So, the classifier function

that we learn can be written as h(·) = pred ◦ f(·) where ‘pred’ is the mapping function

used to convert scores to labels. For instance, pred(a) could be the index corresponding

to the maximum component of a ∈M.

1.2 Risk Minimization Framework

Many of the (often-used) supervised learning methods such as Support Vector Machines,

logistic regression, perceptron, AdaBoost, neural networks etc. can be formulated as

risk minimization problems. The risk is defined with respect to a so called loss function.

A loss function, L, maps scores (M ⊆ RK) and label values (Y) to non-negative real

values, i.e., L : M× Y → R+. The loss function is user-defined and is to be chosen

such that it suitably captures the objectives of the learning process. Risk is defined to

be the expected value of the loss function, L, w.r.t. the underlying distribution of the

data, D. We will refer to the risk with respect to a loss function L as L-risk from now

on and it can be formally written as follows:

RL(f) = ED[L(f(x), yx)] (1.1)

If we are using risk minimization framework, then the global minimizer of risk (defined

in Equation 1.1) is the optimal, and hence, the desired classifier. A global minimizer of

this risk will be denoted by f ∗.

f ∗ = arg min
f∈F

RL(f) = arg min
f∈F

ED[L(f(x), yx)] (1.2)

where F is a hypothesis space over which we learn a classifier function.

As an illustration, let’s look at risk with respect to 0–1 loss function. This loss

function is defined as:

1we denote {1, 2, . . . ,K} as [K] from now on
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L(f(x), yx) =

0 (pred ◦ f(x)) = yx

1 (pred ◦ f(x)) 6= yx

(1.3)

The risk under 0–1 loss function can be written as follows:

R0−1(f) = ED[L0−1(f(x), yx)] = ED[I(pred◦f(x)) 6=yx ]

= ProbD[(pred ◦ f(x)) 6= yx] (1.4)

Thus the minimizer of risk here would be the minimizer of probability of misclassification.

Since 0-1 loss function is non-differentiable, it’s difficult to optimize the risk under

this loss function. To circumvent this, surrogate losses of 0-1 loss function are used

as optimization is easier in that case. Some examples of surrogate losses for 0-1 loss

function in case of binary classification are sigmoid loss, mean squared error (MSE) loss,

and hinge loss.

Since one doesn’t have knowledge about the true, underlying data distribution, D, in

practice, we minimize the empirical risk using samples drawn from D, i.e. the training

set, S. The empirical risk over this training set, S, with respect to a loss function, L can

be defined as:

R̂L(f) =
1

m

m∑
i=1

L(f(xi), yi) (1.5)

The empirical risk, R̂L(f), is a good approximation of the risk, RL(f), because, by law

of large numbers, R̂L(f)→ RL(f) as m→∞. When this convergence is uniform over the

family of functions over which we search for the minimizer, one can show that minimizer

of empirical risk would also be (a good approximation of) minimizer of risk. So, most

learning algorithms, after choosing a suitable loss function, minimize the empirical risk

to learn a classifier function.
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1.3 Learning under Label Noise

1.3.1 Why is it important?

For learning classifiers there are myriad algorithms available such as Support Vector

Machines (SVMs), Decision Trees (DTs), AdaBoost, Neural Networks, etc. However,

there is a caveat. All these learning algorithms have been formulated under the assump-

tion that the training data comes from the same distribution (D) on which we want the

learnt classifier to perform well. In practice, however, one may not always have access to

data from the true underlying distribution (or the distribution that we are interested in

learning). Specifically, in this thesis, we are interested in the situations where the labels

for the training set patterns do not conform to the desired underlying distribution. This

can happen, for example, when for large scale image datasets, labels are obtained via

crowd-sourcing (many of the labellers maybe non-experts) or web-crawlers (search engine

queries may be inadequate). Subjective biases too can create erroneous labels. In such

cases we say that the training data has label noise.

This problem of learning under label noise is especially pertinent in the current times

given the widespread use of neural networks and large-scale datasets for various appli-

cations such as image recognition, speech recognition, etc.

1.3.2 Problem Formulation

We consider a K-class classification problem with X as the feature/pattern space. We

take Y = {0, 1}K as the label space. We assume all labels are one-hot vectors and denote

by ek the one-hot vector corresponding to class k. Let S = {(xi, ycli ), i = 1, 2, · · · ,m}
be the i.i.d. samples drawn according to a distribution D on X × Y . (We think of the

labels here as ‘clean’ and hence the superscript). Let us assume we are interested in

learning a classifier that does well on a test set drawn according to D. We can do so if

we are given S as the training set. However, we do not have access to this training set

and what we have is a training set Sη = {(xi, yi), i = 1, 2, · · · ,m} drawn according to a

distribution Dη. The yx here are the ‘corrupted’ or ‘noisy’ labels and they are random

variables related to the ‘clean’ labels, yclx , through a noise model which can be specified
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through the following conditional probabilities:

ηx,ij = P (yx = j | x, yclx = i), i, j ∈ [K] (1.6)

These conditional probabilities are called noise rates. Since these are conditional

probabilities, we have
∑

j∈[K] ηx,ij = 1, ∀ i ∈ [K], ∀ x. The training data avaialable,

Sη, is drawn according to Dη whereas the clean data from D is not available. Note that

Dη is determined from D and the conditional probabilities given by eq.(1.6). What we

want is to be able to learn a classifier, f , that performs well on clean data, that is, data

drawn from D. (We are not interested in the performance of f on data from Dη). Before

we go ahead and mention different strategies to combat label noise, we categorize label

noise into various types.

� Symmetric/Uniform label noise (SLN):Under such noise, the labels are uniformly

flipped to any one of the remaining classes. This type of noise is characterized by

the noise rates satisfying the following:

ηx,ij =
η

K − 1
∀ i, j ∈ [K], j 6= i, ∀x (1.7)

ηx,ii = 1− η (1.8)

Stated in words, the noise rates ηx,ij are dependent neither on the feature vectors

(x’s) nor the ‘true’ or ‘clean’ labels (yclx ’s). Under symmetric noise we can think of

Sη as derived from S as follows: for each sample in S we retain the same label with

probability 1− η and with probability η the label is changed; when it is changed,

it is equally likely to be any of the other labels. This noise model would be useful,

e.g., in cases of random errors in crowd sourced data.

� Class-conditional label noise (CCLN): This is, relative to symmetric label noise, a

more realistic model of label noise. As per this model, the noise rates can depend

on the ‘true’ labels (yclx ’s) but not on the feature vector, x:

ηx,ij = ηij, ∀x (1.9)
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Based on these probabilities, we can now define the noise rate matrix, N, where

[N]ij = ηx,ij = P (yx = j | x, yclx = i) = P (yx = j | yclx = i) = ηij, which completely

specifies the noise model. This noise model is useful, for example, when different

pairs of classes have different probabilities of being mistaken for each other. For

instance, in MNIST dataset which contains images of hand-written digits, there

could be confusion between digits 2 and 7, 3 and 8, 1 and 7, and so on.

� Non-Uniform label noise (NULN): This is the most general case of label noise. As

per this model, the noise rates are dependent on both the feature vectors and the

true labels.

The problem of learning in presence of label noise has a long history. For example, finite

hypothesis spaces were proven to be PAC-learnable under symmetric label noise in the

1980’s [3,106]. In the last decade or so, the problem of learning under label noise attracted

a lot of attention because many studies have pointed out that the classifier learning

methods get adversely affected if the training set has label noise. Long et al. [67] show

that many boosting algorithms which essentially optimize a convex potential function

perform poorly in presence of label noise. This susceptibility of boosting algorithms to

symmetric label noise is empirically demonstrated by many other studies [21,51,75,76,84].

Similarly many standard algorithms such as naive Bayes, k-Nearest Neighbours (kNNs),

SVMs, and logistic regression perform poorly in presence of symmetric label noise [10,

12, 83, 87, 103, 126]. Quinlan [91] empirically demonstrated for discrete-valued features

that DTs perform poorly in presence of symmetric label noise. Ensemble methods fail as

well in the presence of label noise [2]. Whence it’s clear that these standard algorithms

are not able to learn “good” classifiers when there’s label noise. In the context of neural

networks, [6, 123] demonstrate that neural networks are able to memorize the entire

training dataset for any amount of label noise. That is, given training set with random

labels, these neural networks can learn to exactly reproduce the random labels for training

set patterns. This raises serious questions regarding the generalization capability of

neural networks trained with data having label noise. Hence, it’s pertinent to understand

what algorithmic modifications or new methodologies aid in combating this problem of

label noise while learning the classifier functions.
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1.3.3 Robust Risk Minimization

Risk Minimization framework provides a language to pose the problem of learning under

label noise in a way that helps us to understand many of the important theoretical issues

for combating label noise [30].

Given that there is label noise, we will have access only to the noisy training set,

Sη, whose samples are drawn according to the distribution, Dη. However, we want to

learn a classifier from this training data such that it performs well on data from the true,

underlying distribution, D. By robust risk minimization we mean a risk minimization

strategy that can guarantee this under some conditions. There are two approaches

for such robust risk minimization: i.) loss correction, and ii.) inherently robust loss

functions.

Loss Correction

Loss Correction method involves modification of loss function such that the minimizer

of risk under this modified loss with respect to noisy distribution, Dη, would be same as

minimizer of risk with the original loss function under the clean distribution, D. Suppose

we are interested in finding the minimizer of risk with respect to L and the clean data

distribution. Then the idea of loss correction is to find a loss function L̄ that satisfies

the following.

ED[L(f(x), yclx )] = EDη [L̄(f(x), yx)]

which is same as

ExEyclx |x[L(f(x), yclx )] = ExEyx|x[L̄(f(x), yx)]

(1.10)

This was first proposed in [82] for binary classification to tackle symmetric label

noise. Studies such as [43, 86] extend this method to multi-class classification case for

robustness against symmetric and class-conditional label noise. It’s clear from Equation

1.10 that a minimizer, of L̄-risk under noisy distribution (RHS) is also the minimizer of

L-risk under clean distribution (LHS). If one uses a special class of loss functions called

proper composite losses [93], it can be guaranteed that the minimizer of RHS and LHS

are the same without requiring Equation 1.10 to hold true.
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The design of L̄ to satisfy Equation 1.10 needs knowledge of the noise rates. Thus,

one caveat in this method of loss correction is that we need to know the noise rates

beforehand, or be able to estimate them. In practice one does not know the noise rates

and estimating them reliably from the data is difficult.

Inherently Robust Losses

Robust risk minimization can also be achieved by designing loss functions that are in-

herently robust. Risk minimization with loss function, L, is defined to be robust under

label noise if [73]:

ProbD({pred ◦ f ∗(x) = yx}) = ProbD({pred ◦ f ∗η (x) = yx}) (1.11)

where
f ∗(x) = arg min

f∈F
RL(f) = arg min

f∈F
ED[L(f(x), yclx )]

f ∗η (x) = arg min
f∈F

Rη
L(f) = arg min

f∈F
EDη [L(f(x), yx)]

When the above holds we say loss function L is robust. For binary classification, [73]

show that 0–1 loss function and MSE are robust to symmetric label noise. And that 0–1

loss function is robust to non-uniform label noise as well if true Bayes risk is zero, i.e.

RL(f ∗) = 0. These results are extended in [30] to the case of multi-class classification by

proving sufficient conditions for a special class of loss functions called symmetric losses.

The results are independent of the data distribution and the hypothesis class, F , over

which a classifier is learnt.

A loss, L, is called symmetric if ∃ C ∈ R++ such that it satisfies the following

condition:

K∑
i=1

L(f(x), i) = C ∀x ∀f, (1.12)

(Here we are taking Y = [K]). We note here that, since we assume loss to be non-

negative, from the above definition it follows that a symmetric loss function is bounded

in the following sense:

L(f(x), j) ≤ C, ∀f, ∀x, ∀j ∈ Y (when L is a symmetric loss) (1.13)
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It can be seen that 0–1 is a symmetric loss whereas MSE is not. Unlike the mean

square error, the mean absolute error (MAE) is a loss that is symmetric. It is shown

in [30] that if a loss function is symmetric, then risk minimization is robust for symmetric

label noise if η < K−1
K

and to (a special type of) non-uniform label noise if ηx <
K−1
K

and

RL(f ∗) = 0. These results are based on the idea of robustness as defined in Equation

1.11. There’s another notion of robustness [92] wherein the relative ranks of risk remains

unchanged under noisy and clean distributions as seen in Equation 1.14:

RL(f1) < RL(f2)⇐⇒ Rη
L(f1) < Rη

L(f2) ∀ f1, f2 ∈ F (1.14)

This is a stronger notion of robustness as any local minimizer of RL is a local minimizer

of Rη
L.

Symmetric loss functions offer many advantages for robust learning. One does not

need to know (or estimate) noise rates or assume availability of clean validation data.

And there is only a minimal change in the training algorithm, i.e. changing the loss

function. However, the optimization problem of minimizing risk may be more difficult

with some symmetric losses (e.g., 0–1 loss). Also, it may be noted that symmetry of

a loss function is only a sufficient condition for robustness. In practice, we minimize

empirical risk. So, if consistency of risk minimization holds true and if risk minimizer

is robust, then empirical risk minimizer will also be robust given that we have enough

number of noisy samples.

Apart from these robust risk minimization methods, there are many other algorithmic

approaches for learning under label noise.

1.4 Approaches for tackling label noise

In this section we briefly mention some categories under which we can broadly categorize

all the approaches for tackling label noise proposed in the literature so far. We discuss

them in more detail in the next chapter. These different approaches are as follows:

� Label filtering methods [12, 18, 39, 52, 53, 119] attempt at identifying the samples

that are likely to have incorrect labels. This is one of the oldest approaches and
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mainly incorporates removal of outliers based on heuristics sometimes supported

by robust statistics theory.

� Label cleaning methods [102] attempt at identifying and correcting the potentially

incorrect labels through joint optimization of labels and network weights [104,121]

or treating true labels as latent variables and using EM-style algorithms to infer

them [118]. Various heuristics such as using ensemble of classifiers [134] or entropy

of the softmax output of a neural network [102] are also used to identify the most-

likely-correct label.

� Loss correction methods [43,82,86,110] suitably modify loss function (or posterior

probabilities) to correct for the effects of label noise on risk minimization such

that minimizers of risk under the noisy distribution (Dη) are same as those of risk

under the clean distribution (D); however, they need to know (or estimate) the

noise rates.

� Robust Loss Function based methods devise loss functions which are inherently

robust (Equation 1.11) thereby enabling robust risk minimization in presence of

label noise [14,30,57,69,73,109,128].

� Regularization methods devise regularizers that penalize the network parameters

if the network starts overfitting to noisy data and help the network to learn from

clean data [4, 61,63,70,79,92,124] instead.

� Sample Reweighting methods are one of the popular strategies for regularization

to tackle the noisy data. We discuss this separately from regularization methods

in this thesis because this thesis presents a new algorithm for sample reweighting.

The idea in this approach is to optimize over a weighted loss wherein each sample’s

weight is adjusted such that more weightage is given to the data that is more likely

to be ‘clean’ and overfitting to noisy data is reduced. There are several works that

propose such a scheme [37,50,68,72,94,101,120,122].

1.5 Thesis Organization

We briefly describe the contributions of this thesis and its organization in this section.
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Having formally stated the problem of learning under label noise and what it means to

have robust risk minimization, in Chapter 2, we do an extensive review of the literature on

robust learning under label noise. We provide a categorization for the existing methods

and briely describe the existing methods under these categories.

In Chapter 3, we consider one of the popular methods for tackling label noise –

sample reweighting – which consists of assigning binary or real-valued weights to different

training samples and then minimizing the weighted loss to reduce the effect of samples

with corrupted labels on the learning of neural network parameters. We propose a simple,

adaptive (binary) sample reweighting strategy called BAtch REweighting (BARE) that

utilizes batch statistics of loss values in a given mini-batch for sample reweighting thereby

tying this reweighting to the current state of learning. Unlike existing methods, the

proposed algorithm does not need any clean validation data, needs no knowledge at all of

the noise rates and also does not have any hyperparameters. We empirically demonstrate

the effectiveness of our algorithm on benchmark datasets – MNIST and CIFAR-10 and

Clothing-1M – and show that it is much more efficient in terms of time and has as good

or better robustness compared to other algorithms for different types of label noise and

noise rates. These results demonstrate that relying on current state of learning alone can

help mitigate overfitting to noisy data and provide robust learning under label noise.

In Chapter 4, we analyze another susceptibility of deep neural networks to label noise,

viz. ‘memorization’. This phenomenon of ‘memorization’ – driving training set error to

zero (or close to zero) – is poorly understood. This ‘memorization’ depends on the kind of

local minima that SGD can take the network to which in turn depends on the topography

of the empirical risk that is minimized. Hence, the choice of loss function can be critical

in determining this. However, none of the studies on memorization investigate this. We

perform an empirical study – on benchmark data sets MNIST and CIFAR-10 – and

show that choice of loss function can affect memorization. We show that a special class

of loss functions, namely, symmetric losses, can resist memorization to a good degree.

We formally define what ‘resisting memorization’ means and provide some theoretical

justifications for the empirical results.

In Chapter 5, we summarize the contributions of this thesis and discuss potential

future directions for better robust learning under label noise with neural networks.



Chapter 2

Learning under Label Noise - A

Review

As mentioned in the previous chapter, there have been many algorithms suggested for

mitigating the adverse effects of label noise while learning a classifier. Many of the

algorithms are heuristic in the sense that they do not guarantee robust learning. However,

many algorithms are also quite effective in learning good classifiers when training set is

noisily labelled.

In this chapter, we present a detailed review of methods for learning under label

noise. For the purposes of this review, we categorize the approaches for learning under

label noise into 6 categories: Label Filtering, Label Cleaning, Robust Loss Functions,

Loss Correction, Regularization, and Sample Reweighting. These are discussed in the

next six sections of this chapter.

2.1 Label Filtering

This is one of the oldest approaches adopted by the community. The idea is to identify

and filter out or remove the noisy samples from the training set and then retrain the

model with the remaining samples in the dataset. These noisy samples can be viewed as

outliers in the sense that they represent ‘a case that does not follow the same model as

the rest of the data” [113]. However, here it is not the feature vector that is an outlier

because all xi in the training data come from the same underlying distribution. It is

12
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pairing of xi with a label (which is a categorical variable) that makes it an ‘outlier’ and

the problem of dealing with such outliers is not typically addressed in the classical robust

statistics literature [52]. Label filtering does provide one way to deal with this issue of

such outliers. The difficulty in this approach is to find effective methods of distinguishing

hard-to-learn but informative samples from the noisy ones [34].

Many label filtering algorithms are motivated by outlier detection. An outlier detect-

ing algorithm is proposed in [119] by modifying the hinge loss to make SVM robust. It is

empirically observed that the size of the Decision Trees (DTs) increases in the presence

of label noise [91]. To help DTs become robust, [52] proposes a pruning method which

effectively removes uninformative samples or outliers. After having removed the outliers,

a new DT is learned with the cleaned-up data set.

Since noisy samples would have ‘wrong’ labels, a good heuristic is that any classifier

learning method would find these examples difficult to learn. Thus, if we train many

different classifiers on the data, then most of them may be classifying the noisy samples

incorrectly and this can be used for detecting training data with wrong labels. This idea

of detecting noisy samples via a majority-based decision of ensemble of classifiers (which

are trained on subsets of training set) is referred to as classification filtering. One of the

earliest such algorithms is proposed in [12] where an ensemble of classifiers is trained

with n-fold cross-validation subsets of training data. A sample is declared noisy and

discarded if majority of classifiers misclassify it. With a similar idea and with n-fold

cross-validation subsets, [53] proposes a modified boosting approach wherein the weight

of a sample in every iteration is increased if it’s misclassified in the previous training step;

once this weight exceeds a pre-defined threshold, it is deemed an outlier and discarded.

Another simple heuristic to detect wrong labels is the following: all the points

closer to the centroid of any other class than its own is probably an outlier. This is

used in [18] to propose a k-Nearest Neighbour (kNN) search to identify if a sample’s

label is different from the majority class of its neighbours and discard it in such a case.

Another heuristic algorithm is proposed in [39] to obtain large-margin core set [7] which

is a subset of training data for which the maximum margin hyperplane learnt from it is

a good approximation of that learnt from the entire training data. These heuristics are

seen to work well only if the noisy samples were near the class boundaries.
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2.2 Label Cleaning

This is also one of the early approaches adopted by the research community. The idea

is to clean the noisy samples from the training data set and thus learn a model with the

cleaned-up training data set. The difficulty of distinguishing the hard-to-learn examples

from noisily-labelled examples is present in this approach as well. One can use any of

the label filtering approaches to identify the wrongly labelled data and then use some

heuristics to clean the labels. This is useful because if we discard all samples detected

as noisy, we may end up with significantly reduced training set. Many heuristics are

proposed to infer the true label for a nosiy data sample. It is also possible to clean

labels without explicitly identifying wrongly labelled data beforehand. An interesting

and widely used approach is to treat the unknown but ‘true’ labels as latent variables and

treat the given noisy training sample as incomplete data in an Expectation-Maximization

(EM) style algorithm. One needs a noise model to link the observed data and the latent

variables. Here the E-step would amount to label cleaning and the M-step corresponds

to network parameter updation after label cleaning. Another approach is to use a joint

optimization framework for learning the network parameters and clean labels together.

One of the heuristics for inferring true label for a noisy data sample is that most of

the neighbours of a data point should be of the same class. This is used in [28] which

proposes a kNN to assign a given sample the label of majority class among its k nearest

neighbours. This heuristic does not work well near class boundaries unless there is a

large margin between classes. To deal with label noise in case of online learning where

data is available only in chunks, based on analysis of error rates of linearly combined

neural classifiers done by [105], [134] proposed a greedy algorithm to learn an ensemble

of classifiers trained on previous k chunks of data to reduce the classifier ensemble’s error

rate by minimizing (maximizing) the error-rate variance1 of the classifier ensemble on

the cleaned-up (noisy) parts of the most recent chunk of data. This process gives the

weight-factor for each of the ensemble’s classifiers which is then used to clean up the

current data chunk by weighted-majority voting.

1This idea is referred to as Maximum Variance Margin (MVM) principle.
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There are many algorithms that use the EM framework to clean labels. A label clean-

ing algorithm for binary classification under label noise is proposed in [80] by treating

true labels as latent variables. The posterior probabilities for these latent, true labels

are inferred with the help of an EM algorithm. They propose modifiying the gradient

for CCE loss to make the network prediction close to posterior probability of the latent

true label. An algorithm to infer the true labels and estimate noise rate matrix via a

probabilistic graphical model for label noise is proposed in [118]. EM algorithm is used

to infer the true labels which are then used for supervision by the neural network for the

classification task.

As mentioned earlier, another method of label cleaning is to jointly learn the net-

work parameters as well as the training set labels. A label cleaning network (with linear

activations) in conjunction with the usual neural networks for classifier training was pro-

posed in [108] and the learning algorithm jointly optimizes over network parameters and

training labels. For the label cleaning network to be effective, however, the algorithm

needs a small, clean validation set. They use the Mean Absolute Error (MAE) as the loss

function. A joint optimization framework to learn both the label distribution (to clean

the labels) and network parameters is also proposed in [104, 121]. These algorithms do

not require extra clean data. In addition to this, entropy of network’s posterior probabil-

ities and cross-entropy between label distribution and network’s posterior probabilities

are used as regularizers during the training. A Markov Chain Sampling (MCS) based

framework is proposed in [129] wherein the states of the Markov Chain (MC) are all pos-

sible subsets of the noisy training data. A set of classifiers are trained on different subsets

of the training data. Authors show that, under the intuition and assumption that the

noisy-labelled examples are noisily-labelled because of inconsistent ’mistakes’ and hence

do not come from the same distributions, it is more likely to end up in a “good” state (i.e.

state majorly containing clean examples) as opposed to a “bad” state (i.e. state majorly

containing noisy examples) in the MC. Based on this, authors propose to calculate the

“expected state” which essentially indicates the probability that a sample is clean. This

“expected state” can be used to filter, clean, or serve as sample-weights for the samples.

An algorithm based on consistency of history of label predictions is proposed in [102]

for label cleaning. Here the fractions of times different labels predicted for a sample over
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the last q iterations is taken as a probability distribution over labels and a sample with low

entropy of this distribution is treated as a clean sample. The labels of samples are cleaned

by assigning the most frequent label prediction over the last-q times. Another method

termed negative learning is proposed in [54] wherein the network is fed ‘complementary’

labels – classes which the sample does NOT belong to. This results in a low chance of

selecting a true label as a ‘complementary’ label thereby reducing the risk of providing

incorrect information to the algorithm. This is used to filter out clean and noisy training

data after which we are to iteratively pick the highly confident samples for label cleaning.

A meta-learning based method is proposed in [130]. A label correction network is jointly

learned along with the classifier via meta-learning here. Zheng et al [131] provide an

explanation for why neural networks trained with noisy data are helpful in identifying

noisy data so that it can be filtered out or label-corrected. They show that when the

classifier learned with noisy data has low confidence on the label, such a label is likely

to be corrupted. Based on this, the authors here propose a label cleaning algorithm

that uses ratio of posterior probabilities corresponding to the given label and network’s

prediction. This is further improved in [127] where the threshold is not fixed. This

algorithm can handle even some types of feature-dependent label noise.

2.3 Robust Loss Functions

These approaches focus on devising novel loss functions which are inherently robust

thereby enabling robust risk minimization. As discussed in Section 1.3.3, such loss

functions can result in learning a classifier which would have good generalization error

with respect to the clean data distribution even though the training set has label noise.

Many short-comings of risk minimization with convex loss functions under label noise

are shown in [74] where the authors propose a bounded, non-convex loss function, Savage

Loss, that offers robust learning. Taking cue from [67,74] on the short-comings of using

convex loss functions, the authors of [23] use a heavy tailed distribution to obtain a mod-

ified form of logistic regression. This yields a regularized risk minimization formulation

with a non-convex loss function which gives the model robustness against label noise.
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For a binary classification problem, a gradient-free learning-automata based stochas-

tic optimization scheme for minimizing risk under 0-1 loss for noise-tolerant learning

of hyperplane classifiers is proposed in [96]. A general notion of robustness under label

noise and robust loss functions is proposed in [73]. They derive some sufficient condi-

tions for the robustness of risk minimization under 0-1 and Mean Squared Error (MSE)

losses under NULN and SLN. They also provide some counter examples to show that,

in general, Exponential, Log, and Hinge loss functions are not robust against even SLN.

These results are generalized in [31] to derive sufficient conditions for the family of sym-

metric loss functions to be robust against SLN in a binary classification problem. These

theoretical results are extended to the multi-class case in [30]. Under the condition of

Bayes risk being zero, they derive sufficient conditions for symmetric loss functions to

be robust against general CCLN as well as some types of NULN. It is shown in [14] in

case of binary classification that, for CCLN noise model as proposed in [99], symmetric

margin losses are robust under minimization of Balanced Error Rate (BER) risk and

Area Under Curve (AUC) risk whereas non-symmetric losses need not necessarily yield

the same risk minimizers for the clean and noisy case. The authors here also propose a

barrier-hinge margin loss, which is not globally symmetric but which shows robustness

against label noise empirically. This work also highlights the advantages that symmetric

losses offer in learning under label noise.

Based on results from [67] about the lack of robustness of convex loss functions in

presence of SLN, [107] proposes a negatively-unbounded, convex, classification-calibrated

loss which is a modification of the hinge loss, called unhinged loss. The authors of

this paper show that the proposed unhinged loss is robust against SLN and that many

convex loss functions are robust against SLN if the learner is strongly `2-regularized. A

parametrized loss function, Generalized Cross-Entropy loss, is proposed in [128] and the

CCE and MAE are seen as special cases of this loss. Risk minimization under this loss

allows one to control the rate of convergence and degree of noise-robustness by enabling

parametrized weighting for the gradient term to avoid some issues CCE and MAE losses

face. MAE is robust against label noise [30] but results in a slow convergence rate owing

to a constant-valued gradient. On the other hand, CCE loss gives faster convergence

rates but is not robust against label noise [73]. Hence, it is proposed in [42] to use
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both MAE and CCE with a weighting mechanism to control the contribution of each

which is done by stochastically switching between the two loss functions. It is proposed

in [109] to use the reverse cross-entropy (RCE) loss function as a regularizer while using

cross-entropy loss (CCE) for training, to control the underfitting to clean data. Another

modification of CCE loss by using the n-th order Taylor Series expansion of CCE loss is

proposed in [27] for robust learning.

2.4 Loss Correction

We explained loss Correction based methods for robust risk minimization in Section 1.3.3.

Loss correction involves modifying the given loss function such that the minimizer of risk

under this new, modified loss with respect to the noisy distribution would be the same

as risk minimizer with the original loss function with respect to the clean distribution.

However, this ‘correction’ to design the modification of loss function requires knowledge

of the label noise rates. Hence a central issue in loss correction approaches is that of

estimating the noise rates.

This idea of loss correction was first proposed for binary classification in [82] to tackle

SLN. This method of loss correction was extended to the multi-class case in [86] for ro-

bustness against SLN and CCLN. They show that if one uses a special class of loss

functions called proper composite losses [93], it can be guaranteed that these two mini-

mizers are the same without requiring Equation 1.10 to hold true for all f . Estimation

of the noise rate matrix is done with the help of ‘anchor points’2 which is then used for

‘correction’ of loss. This method is further improved in [43] by estimating noise rate ma-

trix with an extra set of data with clean labels rather than ‘anchor points’ which may be

noisy samples. A model-agnostic meta-learning framework is proposed in [110] to learn

this noise rate matrix directly from the data rather estimating it as mentioned above.

However, this method requires an extra set of clean labels for learning the matrix. For

a given mini-batch, updation of noise rate matrix and loss correction are done one after

the other after which network parameters are updated.

2An anchor point x for class-i is defined by P (yclx = i|X = x) = 1 [66, 98]. In practice one considers
all instances whose computed class posterior probability is close to one as anchor points.
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This estimation of noise rate matrix has been further improved in [117]. Here one

starts with the noise rate matrix initially estimated using anchor points and then jointly

updates the noise rate matrix and neural network parameters by minimizing a weighted

loss wherein the weights depend on this modified/revised transition matrix. Another

method is suggested in [36] to improve the estimation by incorporating priors on the

noise rate matrix.

2.5 Regularization

This approach is one of the most popular ones and has seen a lot of interest in recent

years. The idea here is to design implicit or explicit regularization methods for the

training of classifier under label noise so as to reduce overfitting to the noisy data and/or

underfitting to the clean data.

As mentioned in chapter 1, neural networks can learn to reproduce even random

labels for the training data and this phenomenon has been called memorization. It

is seen that the neural networks can learn weights to drive the training error to zero

even when labels of training data are randomly altered [123]. However, they seem to

be learning the clean data first before overfitting to noisy labels [6]. Based on such

observations of [6, 123] about the memorization effect in neural networks, [71] proposes

an algorithm that identifies the instant during the training phase whence the network has

stopped learning from clean examples and has started overfitting to noisy-examples; after

this point, the learning happens via bootstrapping (in a manner similar to that of [92])

wherein the network’s predictions are given increasingly more weightage for supervision

rather than the labels from the dataset.

A simple, data-agnostic data-augmentation method, mixup, is proposed in [125] which

involves using convex combinations of samples and labels picked at random from training

data. It encourages the classifier to behave linearly in-between the training samples

thereby helping the classifier make better predictions in the vicinity of the training

samples beyond the training set distribution. They empirically show that this helps

with robustness against label noise. Use of this mixup data augmentation along with a

dynamically weighted version of bootstrapping that is similar to that in [92], is proposed
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in [4]. Instead of using static weights for bootstrapping as in [92], the authors here use

dynamically updated (after every epoch) weights obtained by learning a 2-component

Beta Mixture Model (BMM). BMM is used to obtain the probability of a label being clean

or not which are then used as weights for bootstrapping via EM-algorithm. A similar

method with two neural networks for training is proposed in [61]. Two 2-component

Gaussian Mixture Models (GMMs) for sample loss values are trained to separate data

into clean and noisy data. The GMM obtained for one network is used to segregate

the data for the other network. These mixture component probabilities are used as

the weights for the bootstrapping loss along with data augmentation procedure inspired

by [9] for training the pair of neural networks.

Comparison of feature representations of samples from noisy training set against fea-

tures obtained from an auxiliary network trained with extra set of clean data is proposed

in [60] to identify whether or not the training set sample has noisy labels. The cosine

similarity between these features is used for regularization here. One can also use this

similarity to rank samples and remove some samples based on a user-defined threshold.

Apart from this, these similarities can also be used to assign sample weights to reduce

overfitting to noisy data.

A regularizer that smoothens the output posterior probability distribution around

training data is proposed in [79] which is shown to increase robustness against label

noise. It is empirically shown in [35] that performing a gradient ascent using samples

with labels likely to be noisy and gradient descent using samples believed to have clean

labels aids in robustness against label noise. The heuristic for what labels are to be

believed as clean or noisy has to be user-defined here. A meta-learning algorithm in the

teacher-student framework is proposed in [63] wherein a consistency loss for prediction

between teacher and student model predictions is used as a regularizer for achieving ro-

bustness against label noise. Instead of training or cross-training like in [37,72,122], [111]

proposes a joint training of two networks using CCE loss with the contrastive loss (JS

Divergence) between the two network predictions as a regularizer. It is shown in [41] that

decreasing conditional mutual information of weights and labels corresponds to reducing

memorization of label noise. They also propose a way to modify the gradients thereby

controlling this mutual information to reduce the overfitting to noisy data. Using the
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distance between the network parameters from initialization as a regularizer is proposed

in [45]. They also propose adding a trainable auxiliary variables to the network output

for each training example as a regularizer. They theoretically prove that gradient de-

scent training with either of these two methods leads to a generalization guarantee on the

clean data distribution despite being trained using noisy labels. This analysis relies on

the connection between wide neural network and neural tangent kernel (NTK). Empirical

results show the effectiveness of these regularizers. Based on observations of [6] wherein

neural networks are seen to be learning from clean data before overfitting to the noisy

data, a regularizer is devised in [65] that maximizes the inner product between output

posterior probabilities and ‘target’ labels. These ‘target’ labels are exponential average

of old ‘target’ labels and current output posterior probabilities. It is argued in [115]

that inner product between the network parameter values and corresponding gradients

indicates whether or not that parameter is critical for learning from clean data. The

higher the value, the more critical it is to update it so that we are less likely to learn

from noisy data. A certain fraction (dependent on noise rates) of parameters is marked

as non-critical which are updated only using weight decay that will help us drive them

to zero value thereby helping improve generalization.

An empirical study of a family of f -divergences for providing robustness against label

noise is presented in [112]. Adding zero-mean Gaussian noise to labels (stochastic label

noise) for SGD is shown to be effective for robustness to label noise in [15].

2.6 Sample Reweighting

This approach can also be viewed as part of the the broad Regularization category that

we have talked about in the previous section. Since this thesis proposes a new algorithm

for sample reweighting, we review the literature for this category separately here. We

also discuss some of these issues in the next chapter.

The basic idea in sample reweighting is about minimizing a weighted loss wherein

weight for each sample is adjusted such that more weightage is given to data that is

believed to be ‘clean’. This is done to reduce overfitting to noisy data and increase

the influence of clean data. The notion of ‘clean’ or ‘noisy’ has to be defined by the
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algorithm.

Under the assumption that the classifier predictions can be trusted more as epochs go

by, an algorithm is proposed in [92] that uses a convex combination of noisy training labels

and current prediciton probabilities of the classifier as the ‘soft’ labels for training with

CCE loss. This yields a heuristic notion of ‘consistency’ evaluation of noisy samples. This

formulation is equivalent to softmax regression with minimum entropy regularization as

studied in [32] which encourages the model to have a high confidence in predicted labels.

A similar method is proposed in [38] with the difference being that here the convex

combination of noisy and ‘corrected’ labels is used. The ‘corrected’ labels here are

obtained by identifying multiple prototypes for each class that are more likely to have

clean labels which are then used to find the most-likely correct label for a given sample.

A simple change in neural network parameter updation rule is proposed in [72]. In

standard training with clean data, the network will make fewer mistakes and hence

improves its predictions as epochs pass by. But, in case of training with noisy data, since

the parameters will be updated based on mistakes in predicting noisy labels, authors

propose using two similar networks and perform parameter updates only with samples

upon which their predictions disagree. This preserves the behaviour of standard learning

wherein the parameters are updated more frequently at the beginning and less so towards

the end of the training. Moreover, mismatch in prediction and noisy labels is not used

for selecting samples for parameter updation which helps reduce overfitting to the noisy

labels. An algorithm is proposed in [19] which uses an auxiliary network learned from

extra data with clean label whose output is to be used as sample weights for the classifier

learning under label noise. This is similar to [50] with the difference being that here the

updates are done in a meta-learning fashion and the sample weights are not binary. It

is suggested in [77, 89] that preferring samples with low loss values helps in learning in

presence of noisy data whereas it is observed in [1, 29] that preferring high loss-valued

samples helps accelerate and stabilize training with Stochastic Gradient Descent (SGD).

Based on these observations and the fact that it’s often not known how noisy the data

is, an algorithm is proposed in [13] that selects samples either on the basis of variance

in posterior probabilities for the class or proximity of true class posterior probabilities

to the decision threshold. Another method proposed in [50] pre-trains an auxiliary
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network using extra data with clean labels which serves as a sample selection function

for training the main network. Inspired by Co-Training [11], a sample selection scheme

is proposed in [37] wherein two networks select a fraction of small-loss valued samples

(dependent on label noise rates) and feed the selected samples to other network for

training. An improved version of this method is proposed in [122] by selecting samples in

the same manner but from a subset of samples upon which the two networks’ predictions

disagree. A similar algorithm is proposed in [100] wherein only a fraction of small-loss

valued samples are selected for training. Another algorithm, proposed in [120], improves

Co-Teaching [37] by solving a bilevel optimization problem with the help of AutoML

techniques to obtain a relatively optimal sample fraction value. It is shown in [16] that

randomly dividing noisy training set and using cross-validation to identify clean samples

offers robustness. Under the classical assumption that data from the same class should

form a cluster and be similar to each other3, it is proposed in [22] to use a distance

measure of sample from a set of cluster centers for each class in the training data to

decide on the sample weights. The samples which are farther from the set of cluster

centers for corresponding class will be deemed as noisy samples here and therefore will

have a smaller sample weight.

Meta-learning based framework to compute and update sample weights and neural

network parameters is proposed in [94]. The weights are computed with the help of in-

ner product between gradients on training samples and gradients on validation samples

which have clean labels. The algorithms proposed in [24, 47, 64] solve a bi-level opti-

mization problem for learning sample weights and network parameters that results in a

similar inner product between gradients of samples for robustness against label noise.

However, one doesn’t require an extra clean validation set here. The method proposed

in [101] improves upon that in [94] by learning a sample reweighting function that maps

loss values to sample weights via an auxiliary network. This is similar to the idea of

MentorNet [50] with the difference being that MentorNet is not based on meta-learning.

An importance sampling based sample reweighting approach is proposed in [66,97]; how-

ever one needs to estimate these noise rates with the help of extra validation set. The

3Clustering hypothesis: https://en.wikipedia.org/wiki/Cluster hypothesis

https://en.wikipedia.org/wiki/Cluster_ hypothesis
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method in [62] devises a weighting scheme taking into account class-imbalance, intra-

class diversity and inter-class similarity. A sample selection method is proposed in [78]

that identifies subsets of training set that has an approximately low-rank Jacobian. They

show that this helps increase robustness against label noise. Based on the intuition that

noisy data is isolated and surrounded by clean data and clean data well-separated into

clusters, [114] proposes a sample selection algorithm that leverages this topographical

structure of training data.

2.7 Conclusions

In this chapter we have provided a reasonably extensive overview of the literature on

learning under label noise. We categorized the available methods into six categories and

under each approach tried to give an idea of the different methods proposed. As is clear

from all the preceding sections, there are a large number of different methods suggested

for this problem. This area has been particularly active in the last five years. Many

proposed methods are essentially empirical in the sense that there are very few methods

that give theoretical guarantees on robustness. In the next chapter we present a new

sample selection algorithm.



Chapter 3

Adaptive Sample Selection

As discussed in the previous chapter, there have been many different approaches that are

explored for robust learning of classifiers under label noise. In this chapter we focus on

one of these approaches, namely, sample reweighting. We present a new sample selection

heuristic that results in a simple and efficient algorithm whose robustness properties are

comparable to or better than the state-of-art.

3.1 Introduction

In the last few years, many algorithms based on sample reweighting are proposed for

robust learning. The sample reweighting approach consists of assigning weights to dif-

ferent samples and then minimizing the weighted loss. The weights can be binary or

real-valued. When they are binary, we call it a sample selection algorithm. Here, the

motivation for the algorithm is to guess which samples have incorrect labels, and then

consider the loss only on the remaining samples while learning the parameters of the

neural network. Even in the case where the weights are real valued, the motivation

is the same: reduce the effect of samples with incorrect labels on the learning of the

neural network. There have been many heuristics suggested for choosing such weights

(e.g., [37, 122]). There are also algorithms that use an auxiliary network to learn the

appropriate weights using a separate set of samples with clean labels (e.g., [50, 101]).

Another possible approach is to optimize both on the weights for samples as well as on

the parameters of the neural network (e.g., [94, 104]).

25
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In this chapter we present a novel algorithm that adaptively selects samples based

on the statistics of observed loss values (or posterior probability values) in a minibatch.

The algorithm is very simple and achieves good robustness to label noise. The algorithm

does not use any additional system for learning weights for samples, does not need

extra data with clean labels and does not assume any knowledge of noise rates. Since

it is a sample selection algorithm, it essentially amounts to choosing those samples in

a mini-batch whose current loss values are below some threshold. The threshold itself

is determined based on the statistics of current mini-batch and is thus automatically

adapted as the learning progresses. Like many of the sample reweighting algorithms, the

proposed algorithm also can be seen as motivated by curriculum learning.

The curriculum learning [8, 58] is a general strategy of sequencing of samples so

that the networks learn the ‘easy’ samples well before learning the ‘hard’ ones. The

curriculum or sequencing of the samples can be done through an external teacher or

through a mechanism in the algorithm itself (e.g., self-paced learning [58]). This is

often brought about by giving different weights to different samples in the training set.

Many of the recent algorithms for robust learning based on sample reweighting can be

seen as motivated by a similar idea. In the context of label noise, one can think of

clean samples as the easy ones and the samples with wrong labels as the hard ones. In

many of these approaches, the weight assigned to a sample is essentially determined by

the loss function value on that sample with a heuristic that, low loss values indicate

reliable labels. Many different ways of fixing/learning such weights have been proposed

(e.g., [47,94,101]). A good justification for this approach of assigning weights to samples

for achieving robustness comes from some recent studies on the effects of noisily-labelled

data on learning deep neural networks. It is empirically shown in [6] that deep neural

networks can learn to achieve zero training error on completely randomly labelled data,

a phenomenon termed as ‘memorization’. However, further studies such as [6, 71] have

shown that the networks, when trained on randomly-labelled data, seem to learn from

the cleanly-labelled data first before overfitting to the noisily-labelled data. Thus, till

the overfitting to noisy labels starts, the loss of samples with noisy labels are likely to

be higher than that for samples with clean labels.

Motivated by this, several strategies of ‘curriculum learning’ have been devised that
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aim to select (or give more weightage to) ‘clean’ samples for obtaining a degree of ro-

bustness against label noise [37,50,68,120,122]. All such methods essentially employ the

heuristic of ‘small loss’ for sample selection or weighting wherein (a fraction of) small-loss

valued samples are preferentially used for learning the network.

Algorithms such as Co-Teaching [37] and Co-Teaching+ [122] use two networks and

select samples with loss value below a threshold in one network to train the other. In

Co-Teaching, the threshold is computed based on the knowledge of noise rate and the

computed threshold is the same for all samples irrespective of the class labels. The same

threshold computation method is used in Co-Teaching+ but the sample selection is based

on disagreement between the two networks. That is, among the low-loss valued samples,

the subset on which the two networks differ are the ones selected to train the networks.

The MentorNet [50], another recent algorithm based on curriculum learning, uses an

auxiliary neural network trained to serve as a sample selection function. One needs a

separate set of samples with clean labels to train this second network, termed the mentor

network.

There are other adaptive sample reweighting schemes such as [94,101] which also rely

on learning sample weights. They solve a separate learning problem where, given the

current loss values one needs to infer appropriate weights for all samples. These methods

also require some extra data with clean labels for learning these weights.

These algorithms which employ an additional learning step to infer a mapping from

loss values to weights of samples, need additional computing resources as well as access to

extra data with clean labels. In addition, they have extra hyperparameters for training

the sample weighting function and these also need tuning. All such methods, in effect,

assume that one can assess whether or not a sample has clean label based on some

function of the loss value of that sample. However, loss value of any specific sample is

itself a function of the current state of learning and it evolves with epochs. Loss values

of even clean samples may change over a significant range during the course of learning.

Further, the loss values achievable by a network even on clean samples may be different

for samples of different classes.

The algorithms such as Co-Teaching and Co-Teaching+ also have threshold com-

puting method which does not distinguish between samples of different classes. The
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calculation of the loss threshold needs knowledge of noise rate. These algorithms use a

single number as the noise rate. That is reasonable for symmetric label noise. However,

when we have class conditional label noise, it is not clear what noise rate one should use

in these algorithms. These methods rely on estimating the noise rate from samples. In

general, it is difficult to estimate label corruption probabilities reliably from the training

data. As we show through simulations here, the method is sensitive to errors in the

estimation of noise rate.

Motivated by these considerations, we propose a simple, adaptive curriculum based

sample selection strategy called BAtch REweighting (BARE). The idea is to focus on

the current state of learning, in a given mini-batch, for identifying the noisily labelled

data in it. The statistics of loss values of all samples in a mini-batch would give useful

information on current state of learning. Our algorithm utilizes these batch statistics to

compute the threshold for sample selection in a given mini-batch. We do not need any

knowledge of noise rates at all. This will give us what is essentially a dynamic or adaptive

curriculum. In addition, while calculating the batch statistics we take into consideration

the class labels also and hence the dynamic thresholds are also dependent on the given

labels of the samples.

The main contribution of this chapter is an adaptive sample selection strategy for

robust learning that is simple and efficient, does not need any clean validation data,

needs no knowledge at all of the noise rates and also does not have any hyperparameters

in the sample selection process. We empirically demonstrate the effectiveness of our

algorithm on benchmark datasets: MNIST [59], CIFAR-10 [56], and Clothing-1M [118];

and show that our algorithm is much more efficient in terms of time and has as good

or better robustness compared to other algorithms for different types of label noise and

noise rates.

3.1.1 Related Work

Curriculum learning (CL) as proposed in [8] is the designing of an optimal sequence

of training samples to improve the model’s performance. The order of samples in this

sequence is to be decided based on a notion of easiness which can be fixed based on

some prior knowledge. A curriculum called Self-Paced Learning (SPL) is proposed in [58]
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wherein easiness is decided based on how small the loss values are. A framework to unify

CL and SPL is proposed in [49] by incorporating the prior knowledge about curriculum

and feedback from the model during training with the help of self-paced functions that

are to be used as regularizers. SPL with diversity [48] improved upon SPL by proposing

a sample selection scheme by encouraging selection of a diverse set of easy samples for

learning with the help of a group sparsity regularizer. This is further improved in [133]

by encouraging more exploration during early phases of learning.

Motivated by similar ideas, many sample reweighting algorithms are proposed for

tackling label noise in neural networks. Sample selection / reweighting algorithms for

robust deep learning can be viewed as designing a fixed or adaptive curriculum. A sample

selection algorithm based on the ‘small loss’ heuristic wherein the algorithm will select a

fraction of small loss valued samples for training is proposed in [37, 122]. Two networks

are cross-trained with samples selected by each other based on this criterion. [68] also

relies on ‘small loss’ heuristic but the threshold for sample selection is adapted based

on the knowledge of label noise rates. When a (small amount of) separate data with

clean labels is available, [50] proposes a data-dependent, adaptive curriculum learning

method wherein an auxiliary network trained on this clean data set is used to select

reliable samples from the noisy training data for training the classifier. When such clean

data is not available, it reduces to a non-adaptive, self-paced learning scheme. Another

sample selection algorithm is proposed in [72] where the idea is to train two networks

and update the network parameters only in case of a disagreement between the two

networks. [68] propose a curriculum that’s adaptive in spite of the threshold being fixed.

This threshold, however, is dependent on the noise rate. For this, the authors propose

a loss function that can be constructed using a surrogate loss of 0-1 loss function. This

resultant loss is a (binary) weighted sum of the chosen surrogate loss values such that it’s

minimized with respect to the user-defined threshold. These sample selection functions

are mostly hand-crafted and, hence, they can be sub-optimal. A general strategy is to

solve a bilevel optimization problem to find the optimal sample weights. For instance,

the sample selection function used in [37, 122] is sub-optimally chosen for which [120]

proposes an AutoML-based approach to find a better function, by fine-tuning on separate

data with clean labels. Sample reweighting algorithms proposed in [94] and [101] use
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online meta-learning and need some extra data with clean labels. The method in [94]

uses the gradients of loss on noisy and clean data to learn the weights for samples while

the method in [101] tries to learn these weights as a function of their loss values.

3.2 Batch Reweighting Algorithm

In this section we describe the proposed sample reweighting algorithm that relies on

mini-batch statistics. First we recall our notation.

The distribution of data under clean labels is D on X ×Y . The ideal (and unobserv-

able) training set with clean labels is Scl = {(xi, ycli ), i = 1, 2, · · · ,m} which consists of

iid samples drawn according to D. We consider a K-class problem and take ycli to be one-

hot vectors. We denote by ek the one-hot vector corresponding to class k. The training

data with noisy labels that we have access to is S = {(xi, yi), i = 1, 2, · · · ,m} drawn ac-

cording to a distribution Dη. Here we will consider only symmetric and class-conditional

label noise. Hence, the yi and ycli are related as

P [yi = ek′ | ycli = ek] = ηkk′

For the special case of symmetric noise we have ηkk = (1 − η) and ηkk′ = η
K−1 ,∀k

′ 6= k.

Here, we assume η < K−1
K

. For the general class conditional noise, we assume that the

noise rate matrix, N , is diagonally dominant; that is, ηkk > ηkk′ ,∀k′ 6= k.

For assessing robustness, we test the classifier on test data with clean labels. That

is, test data is drawn from D.

We denote by f(·; θ) a classifier function parameterized by θ. We assume that the

neural network classifiers that we use have softmax output layer. Hence, while the

training set labels, yi, are one-hot vectors, we will have f(x; θ) ∈ ∆K−1, where ∆K−1 ⊂
[0, 1]K is the probability simplex. We denote by L(f(x; θ), y) the loss function used for

the classifier training which in our case is the CCE loss.
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3.2.1 Adaptive Curriculum through Batch Statistics

General curriculum learning can be viewed as minimization of a weighted loss [50,58]:

min
θ,w∈[0,1]m

Lwtd(θ,w) =
m∑
i=1

wiL(f(xi; θ), yi)

+G(w) + β||θ||2

where G(w) represents the curriculum. Since one normally employs SGD for learning,

we will take m here to be the size of a mini-batch. One simple choice for the curriculum

is [58] G(w) = −λ||w||1, λ > 0. Putting this in the above, omitting the regularization

term and taking li = L(f(xi; θ), yi), the optimization problem becomes

min
θ,w∈[0,1]m

Lwtd(θ,w) =
m∑
i=1

(wili − λwi)

=
m∑
i=1

(wili + (1− wi)λ)−mλ

Under the usual assumption that loss function is non-negative, for the above problem,

the optimal w for any fixed θ is: wi = 1 if li < λ and wi = 0 otherwise. If we want an

adaptive curriculum, we want λ to be dynamically adjusted based on the current state

of learning. First, let us consider the case where we make λ depend on the class label.

The optimization problem becomes

min
θ,w∈[0,1]m

Lwtd(θ,w) =
m∑
i=1

(wili − λ(yi)wi)

=
K∑
j=1

∑
i:yi=ej

(wili − λjwi)

=
K∑
j=1

∑
i:yi=ej

(wili + (1− wi)λj)−
K∑
j=1

∑
i:yi=ej

λj

where λj = λ(ej). As is easy to see, the optimal wi (for any fixed θ) are still given by

the same relation: for an i with yi = ej, wi = 1 when li < λj. Note that this relation for

optimal wi is true even if we make λj a function of θ and of all xi with yi = ej. Thus we

can have a truly dynamically adaptive curriculum by making these λj depend on all xi
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of that class in the mini-batch and the current θ.

The next question is how we should decide or evolve these λj. As we mentioned

earlier, we want these to be determined by the statistics of loss values in the mini-batch.

Consider those i for which yi = ej. We would be setting wi = 1 and hence use this

sample to update θ in this minibatch if this li < λj. We want λi to be fixed based on

the observed loss values of this mini-batch. Since there is sufficient empirical evidence

that we tend to learn from the clean samples before overfitting to the noisy ones, some

quantile or similar statistic of the set of observed loss values in the mini-batch (among

patterns labelled with a specific class) would be a good choice for λj.

Since we are using CCE loss, we have li = − ln (fj(xi; θ)) and as the network has

softmax output layer, fj(xi; θ) is the posterior probability of class-j under current θ for

xi. Since the loss and this posterior probability are inversely related, our criterion for

selection of a sample could be that the assigned posterior probability is above a threshold

which is some statistic of the observed posterior probabilities in the mini-batch. We take

the statistic to be mean plus one standard deviation. (This choice does not appear to

be too critical and we got comparable results with median as the statistic)

We can sum up the above discussion of our method of adaptive curriculum based on

mini-batch statistics as follows. In any mini-batch we set the weights for samples as

wi =

1 if fyi(xi; θ) ≥ 1
|Syi |

∑
s∈Syi

fys(xs; θ) + σyi

0 else
(3.1)

where Syi = {k ∈ [m] | yk = yi} and σej indicates the sample variance of the class

posterior probabilities for class-j in the given mini-batch.

Algorithm Implementation

Keeping in mind that the neural networks are trained in a mini-batch manner, Algorithm

1 consists of three parts: i.) computing sample selection threshold, ΛK×1, for a given

mini-batch of data (Step 8), ii.) sample selection based on this threshold (Steps 9-13) as

per Equation 3.1, and iii.) parameter updation using these selected samples (Step 14).
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Algorithm 1: BAtch REweighting (BARE) Algorithm

1: Input: noisy dataset Dη, # of classes K, # of epochs Tmax, learning rate α

2: Initialize: Network parameters, θ0

3: for t = 0 to Tmax − 1 do

4: Shuffle the training dataset Dη
5: for i = 1 to |Dη|/|M| do

6: Draw a mini-batch M from Dη
7: R ← φ /* selected samples in M */

8: For M, compute vector, ΛK×1 where Λp = 1
|Sp|
∑

s∈Sp fp(xs; θt) + σp /*(Eq.

3.1), average posterior probability */

9: for each x ∈M do

10: if fyx(x; θt) ≥ Λyx then

11: R ← R∪ (x, yx) /* Select sample */

12: end if

13: end for

14: θt+1 = θt − α∇
(

1
|R|
∑

(x,yx)∈R L(x, yx; θt)
)

/* parameter updates */

15: end for

16: end for

17: Output: θt

3.3 Experiments on Noisy Dataset

Dataset: We demonstrate the effectiveness of the proposed algorithm on two benchmark

image datasets: MNIST and CIFAR10. These data sets are used to benchmark almost

all algorithms for robust learning under label noise and we briefly describe the data sets.

(The details of data sets are given in Table 3.1). MNIST contains 60,000 training images

and 10,000 test images (of size 28 × 28) with 10 classes. CIFAR-10 contains 50,000

training images and 10,000 test images (of size 32× 32) with 10 classes.

We test the algorithms on two types of label noise: symmetric and class-conditional

label noise. In symmetric label noise, each label is randomly flipped to any of the re-

maining classes with equal probability, whereas for class-conditional noise, label flipping

is done in a set of similar classes. For the simulations here, for MNIST, the following



CHAPTER 3. ADAPTIVE SAMPLE SELECTION 34

flipping is done: 1← 7, 2→ 7, 3→ 8, and 5↔ 6. Similarly, for CIFAR10, the following

flipping is done: TRUCK→ AUTOMOBILE, BIRD→ AIRPLANE, DEER→ HORSE,

CAT ↔ DOG. We use this type of noise because that is arguably a more realistic sce-

nario and also because it is the type of noise, in addition to symmetric noise, that other

algorithms for learning under label noise have used. Apart from this, we also provide

results with an arbitrary noise rate matrix. For all the datasets, 80% of the training

set is used for training and, from the remaining 20% data, we sample 1000 images that

constitute the validation set.

We also experiment with the Clothing-1M dataset [118] which is a large-scale dataset

obtained by scraping off the web for different images related to clothing. It contains noise

that can be characterized as somewhat close to feature-dependent noise, the most generic

kind of label noise. An estimated 40% images have noisy labels. The training dataset

contains 1 million images and the number of classes is 14. There are additional training,

validation, and test sets of 50k, 14k, and 10k images respectively with clean labels.

Since there’s a class imbalance, following similar procedure as in existing baselines, we

use 260k images from the original noisy training set for training while ensuring equal

number of images per class in the set. We use a test set of 10k images with clean labels

for performance evaluation.

Data Augmentations: For MNIST we use no data augmentation. For CIFAR-10 we

do a random cropping with padding of 4, and random horizontal flips. For Clothing-1M

we do random cropping while ensuring image size is fixed.

Table 3.1: Dataset details

train size test size # class size

MNIST 60,000 10,000 10 28×28

CIFAR-10 50,000 10,000 10 32×32

Clothing-1M 10,00,000 10,000 14 224×224

Baselines:We compare the proposed algorithm with the following algorithms from

literature:
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(1.) Co-Teaching (CoT) [37] which involves cross-training of two similar networks by

selecting a fraction (dependent on noise rates) of low loss valued samples;

(2.) Co-Teaching+ (CoT+) [122] which improves upon CoT with the difference being

sample selection only from the subset upon which the two networks’ predictions

disagree;

(3.) Meta-Ren (MR) [94], which involves meta-learning of sample weights on-the-fly by

comparing gradients for clean and noisy data;

(4.) Meta-Net (MN) [101], which improves upon MR by explicitly learning sample

weights via a separate neural network;

(5.) Curriculum Loss (CL) [68], which involves a curriculum for sample selection based

on (estimated) noise rates;

(6.) Standard (CCE), which is the usual training through empirical risk minimization

with cross-entropy loss (using the data with noisy labels).

Among these baselines, CoT, CoT+, and CL are sample selection algorithms that

require knowledge of noise rates. The algorithms CoT+ and CL need a few initial

iterations without any sample selection as a warm-up period; we used 5 epochs and 10

epochs as warm up period during training for MNIST and CIFAR-10 respectively. MR

and MN assume access to a small set of clean validation data. Because of this, and for

a fair comparison among all the baselines, a clean validation set of 1000 samples is used

in case of MR and MN, and the same set of samples but with the noisy labels is used

for the rest of the algorithms including the proposed one.

Network architectures & Optimizers: While most algorithms for learning un-

der label noise use MNIST and CIFAR10 data, different algorithms use different net-

work architectures. Here we have decided to use small networks that give state of art

performance on clean data and investigate the robustness we get by using our algo-

rithm. We use one MLP and one CNN architecture. For MNIST we train a 1-hidden

layer fully-connected network with Adam (learning rate = 2× 10−4 and a learning rate

scheduler: ReduceLROnPlateau). (This is same as the network used for Co-Teaching

and Co-Teaching+ [37, 122]). For CIFAR-10 we train a 4-layer CNN with Adam [55]
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(learning rate = 2 × 10−3 and a learning rate scheduler: ReduceLROnPlateau). All

networks are trained for 200 epochs. For MR, SGD optimizer with momentum 0.9 and

learning rate of 1 × 10−3 is used as the meta-optimizer. For MN, SGD optimizer with

learning rate of 2 × 10−3 is used as meta-optimizer. For CL, soft hinge loss is used as

suggested in [68] instead of cross-entropy loss. Rest of the algorithms implemented in

this chapter use cross-entropy loss. All the simulations are run for 5 trials. A pre-trained

ResNet-50 is used for training on Clothing-1M with SGD (learning rate of 1× 10−3 that

is halved at epochs 6 and 11) with a weight decay of 1× 10−3 and momentum 0.9 for 14

epochs. All experiments use PyTorch [85], NumPy [40], scikit-learn [88], and NVIDIA

Titan X Pascal GPU with CUDA 10.0. Table 3.2 contains details about the network

architecture used for training on MNIST and CIFAR-10 datasets. These settings of op-

timizer, learning rate, and learning rate scheduler were found to work the best for our

experimental and hardware setup. All the codes for these experiments are available here:

https://github.com/dbp1994/masters thesis codes/tree/main/BARE.

Table 3.2: Network Architectures used for training on MNIST and CIFAR-10 datasets

MNIST CIFAR-10

dense 28×28 → 256

3×3 conv., 64 ReLU, stride 1, padding 1

Batch Normalization

2×2 Max Pooling, stride 2

3×3 conv., 128 ReLU, stride 1, padding 1

Batch Normalization

2×2 Max Pooling, stride 2

3×3 conv., 196 ReLU, stride 1, padding 1

Batch Normalization

3×3 conv., 16 ReLU, stride 1, padding 1

Batch Normalization

2×2 Max Pooling, stride 2

dense 256 → 10 dense 256 →10

Performance Metrics: For all algorithms we compare test accuracies on a separate

https://github.com/dbp1994/masters_thesis_codes/tree/main/BARE
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test set with clean labels. The main idea in all sample selection schemes is to identify

noisy labels. Hence, in addition to test accuracies, we also compare precision (# clean

labels selected / # of selected labels) and recall (# clean labels selected / # of clean labels

in the data) in identifying noisy labels.

3.3.1 Discussion of Results

Performance on MNIST

(a) (b) (c)

Figure 3.1: Test Accuracies - MNIST - Symmetric ((a) & (b)) & Class-conditional ((c))

Label Noise

Figure 3.1 shows the evolution of test accuracy (with training epochs) under symmet-

ric (η ∈ {0.5, 0.7}) and class conditional (η = 0.45) label noise for different algorithms.

We can see from the figure that the proposed algorithm outperforms the baselines for

symmetric noise. For the case of class-conditional noise, the test accuracy of the pro-

posed algorithm is marginally less than the best of the baselines, namely CoT and MR.

Figure 3.1 showed the evolution of test accuracies with epochs. We tabulate the final

test accuracies of all algorithms in Tables 3.3 – 3.5. The best two results are in bold.

These are accuracies achieved at the end of training. For CoT [37] and CoT+ [122], we

show accuracies only of that network which performs the best out of the two that are

trained.
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Table 3.3: Test Accuracy (%) for MNIST - η = 0.5 (symmetric)

Algorithm Test Accuracy

CoT [37] 90.80± 0.18

CoT+ [122] 93.17 ± 0.3

MR [94] 90.39± 0.07

MN [101] 74.94± 9.56

CL [68] 92.00± 0.26

CCE 74.30± 0.55

BARE (Ours) 94.38 ± 0.13

Table 3.4: Test Accuracy (%) for MNIST - η = 0.7 (symmetric)

Algorithm Test Accuracy

CoT [37] 87.17± 0.45

CoT+ [122] 87.26± 0.67

MR [94] 85.10± 0.28

MN [101] 65.52± 21.35

CL [68] 88.28 ± 0.45

CCE 61.19± 1.29

BARE (Ours) 91.61 ± 0.60

Performance on CIFAR-10

Figure 3.2 shows the test accuracies of the various algorithms as the training progresses

for both symmetric (η ∈ {0.3, 0.7}) and class-conditional (η = 0.4) label noise. We can

see from the figure that the proposed algorithm outperforms the baseline schemes and

its test accuracies are uniformly good for all types of label noise.

It is to be noted that while test accuracies for our algorithm stay saturated after

attaining maximum performance, the other algorithms’ performance seems to deteriorate

as can be seen in the form of accuracy dips towards the end of training. This suggests
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Table 3.5: Test Accuracy (%) for MNIST - η = 0.45 (class-conditional)

Algorithm Test Accuracy

CoT [37] 95.20 ± 0.22

CoT+ [122] 91.10± 1.51

MR [94] 95.40 ± 0.31

MN [101] 75.03± 0.59

CL [68] 81.52± 3.27

CCE 74.96± 0.21

BARE (Ours) 94.11± 0.77

(a) (b) (c)

Figure 3.2: Test Accuracies - CIFAR10 - Symmetric ((a) & (b)) & Class-conditional ((c))

Label Noise

that our proposed algorithm doesn’t let the network overfit even after long durations of

training unlike the case with other algorithms.

All the algorithms, except the proposed one, have hyperparameters (in the sample

selection/weighting method) and the accuracies reported here are for the best possible

hyperparameter values obtained through tuning. The MR and MN algorithms are par-

ticularly sensitive to hyperparameter values in the meta learning algorithm. In contrast,

BARE has no hyperparameters for the sample selection and hence no such tuning is

involved.

As in the case of MNIST, we tabulate the final test accuracies of all algorithms on
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CIFAR in Tables 3.6 – 3.8. The best two results are in bold.

Table 3.6: Test Accuracy (%) for CIFAR-10 - η = 0.3 (symmetric)

Algorithm Test Accuracy

CoT [37] 71.72 ± 0.30

CoT+ [122] 60.14± 0.35

MR [94] 62.96± 0.70

MN [101] 51.65± 1.49

CL [68] 66.124± 0.45

CCE 54.83± 0.28

BARE (Ours) 75.85 ± 0.41

Table 3.7: Test Accuracy (%) for CIFAR-10 - η = 0.7 (symmetric)

Algorithm Test Accuracy

CoT [37] 58.95 ± 1.31

CoT+ [122] 37.69± 0.70

MR [94] 45.14± 1.04

MN [101] 23.23± 0.65

CL [68] 44.82± 2.42

CCE 23.46± 0.37

BARE (Ours) 59.53 ± 1.12

It may be noted from the tables giving test accuracies on MNIST and CIFAR-10,

that sometimes the standard deviation in the accuracy for MN is high. As we mentioned

earlier, we noticed that MN is very sensitive to the tuning of hyper parameters. While

we tried our best to tune all the hyper parameters, may be the final ones we found for

these cases are still not the best and that is why the standard deviation is high.
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Table 3.8: Test Accuracy (%) for CIFAR-10 - η = 0.4 (class-conditional)

Algorithm Test Accuracy

CoT [37] 65.26± 0.78

CoT+ [122] 63.05± 0.39

MR [94] 70.27 ± 0.77

MN [101] 63.84± 0.41

CL [68] 64.48± 2.02

CCE 64.06± 0.32

BARE (Ours) 70.63 ± 0.46

Table 3.9: Algorithm run times for training (in seconds)

Algorithm MNIST CIFAR10

BARE 310.64 930.78

CoT 504.5 1687.9

CoT+ 537.7 1790.57

MR 807.4 8130.87

MN 1138.4 8891.6

CL 730.15 1254.3

CCE 229.27 825.68

Efficiency of BARE

Table 3.9 shows the typical run times for 200 epochs of training with all the algorithms.

It can be seen from the table that the proposed algorithm takes roughly the same time

as the usual training with CCE loss whereas all other baselines are significantly more

expensive computationally. In case of MR and MN, the run times are around 8 times

that of the proposed algorithm for CIFAR-10.
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Performance on Clothing1M

The results are summarized in Table 3.10. We report the baseline accuracies as observed

in the corresponding papers. And, for this reason, the baselines with which we com-

pare our results are different. These are the baselines that have reported results on this

dataset. It shows that that even for datasets used in practice which have label noise that

isn’t synthetic unlike the symmetric and class-conditional label noise used for aforemen-

tioned simulations, the proposed algorithm performs better than all but one baselines.

However, it is to be noted that DivideMix requires about 2.4 times the computation time

required for BARE. In addition to this, DivideMix requires tuning of 5 hyperparameters

whereas no such tuning is required for BARE.

Table 3.10: Test accuracies on Clothing-1M dataset

Algorithm Test Accuracy (%)

CCE 68.94

D2L [71] 69.47

GCE [128] 69.75

Forward [86] 69.84

CoT [37]1 70.15

JoCoR [111] 70.30

SEAL [17] 70.63

DY [5] 71.00

SCE [109] 71.02

LRT [132] 71.74

PTD-R-V [116] 71.67

Joint Opt. [104] 72.23

BARE (Ours) 72.28

DivideMix [61] 74.76

1as reported in [17]
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(a) (b) (c)

Figure 3.3: Label Precision - MNIST - Symmetric ((a) & (b)) & Class-conditional ((c))

Label Noise

(a) (b) (c)

Figure 3.4: Label Precision - CIFAR10 - Symmetric ((a) & (b)) & Class-conditional ((c))

Label Noise

Efficacy of detecting clean samples

Figure 3.3 and Figure 3.4 show the label precision (across epochs) of the various al-

gorithms on MNIST and CIFAR-10 respectively. One can see from these figures that

BARE has comparable or better precision. Thus, compared to other sample selection

algorithms, a somewhat higher fraction of samples selected for training by BARE have

clean labels. Figure 3.5 show the label recall values for CoT, CoT+, CL, and BARE

for MNIST (3.5(a)) and CIFAR-10 (3.5(b) & 3.5(c) ). It can be noted that BARE con-

sistently achieves better recall values compared to the baselines. Higher recall values

indicate that the algorithm is able to identify clean samples more reliably. This is useful,
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for example, to employ a label cleaning algorithm on the samples flagged as noisy (i.e.,

not selected) by BARE. CoT+ selects a fraction of samples where two networks disagree

and, hence, after the first few epochs, it selects very few samples (∼ 3000) in each epoch.

Since these are samples in which the networks disagree, a good fraction of them may

have noisy labels. This may be the reason for the poor precision and recall values of

CoT+ as seen in these figures. This can be seen from Figure 3.6 as well which shows

the fraction of samples chosen by the sample selection algorithms as epochs go by on

CIFAR-10 & MNIST dataset. It can be noted that, as noise rate is to be supplied to

CoT and CL, they select 1−η = 0.6 fraction of data with every epoch. Whereas, in case

of CoT+, the samples where the networks disagree is small because of the training dy-

namics and as a result, after a few epochs, it consistently selects very few samples. Since

the noise is class-conditional, even though η = 0.4, the actual amount of label flipping

is ∼ 20%. And this is why it’s interesting to note that BARE leads to an approximate

sample selection ratio of 80%.

(a) (b) (c)

Figure 3.5: Label Recall - Symmetric ((a) & (b)) & Class-conditional ((c)) Label Noise

Figure 3.6 shows the fraction of samples selected by different algorithms in each

epoch. As is evident from these figures, BARE is able to identify higher fraction of clean

samples effectively even without the knowledge of noise rates.

Sensitivity to noise rates

Some of the baselines schemes such as CoT, CoT+, and CL require knowledge of true

noise rates beforehand. This information is typically unavailable in practice. One can
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(a) (b) (c)

Figure 3.6: (a): Sample fraction values for η = 0.5 (symmetric noise) on MNIST, (b):

Sample fraction values for η = 0.7 (symmetric noise) on CIFAR-10, (c): sample fraction

values for η = 0.4 (class-conditional noise) on CIFAR-10

(a) (b)

Figure 3.7: Test accuracies when estimated (symmetric) noise rate, η = 0.5, and true

noise rate, η = 0.7, for (a): MNIST & (b): CIFAR-10

estimate the noise rates but there would be inevitable errors in estimation. Figure 3.7

shows the effect of mis-specification of noise rates for these 3 baselines schemes. As

can be seen from these figures, while the algorithms can exhibit robust learning when

the true noise rate is known, the performance deteriorates if the estimated noise rate

is erroneous. Obviously, BARE does not have this issue because it does not need any

information on noise rate.
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1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0.6 0 0 0 0 0.3 0 0.1

0 0 0 0.5 0 0.1 0 0 0.4 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0.15 0.55 0.3 0 0 0

0 0 0 0 0 0.35 0.55 0.10 0 0

0 0.25 0 0 0 0 0 0.5 0 0.25

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


Arbitrary Noise Matrix for MNIST

Results on Arbitrary Noise Matrix

Earlier, we showed results for special cases of class-conditional noise. There the noise

rate is still specifiable by a single number and there is a pre-fixed pairs of classes that

can be confused with each other. As explained earlier, we have used this type of noise

because that was what was used in literature.

We now provide results for class-conditional noise with an arbitrary, diagonally-

dominant noise matrix. We show the noise matrices above. These noise matrices are

chosen arbitrarily. However, as can be seen, now in each row more than two entries can

be non-zero.

The results obtained with different algorithms are shown in Tables 3.11–3.14. As

mentioned earlier, algorithms CoT, CoT+ and CL need knowledge of noise rate. With

an arbitrary noise matrix, it is not clear what number can be supplied as the noise rate

for these algorithms, even if we know all the noise rates. For these simulations, η = 0.45

and η = 0.4 are supplied as the estimated noise rates to CoT, CoT+, and CL baselines

for MNIST and CIFAR-10 respectively. In the tables, the best two results are in bold.

It can be seen that the proposed algorithm continues to perform well.
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1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0.2 0 0.7 0 0 0 0.1 0 0 0

0.1 0 0 0.6 0 0.1 0 0 0.2 0

0 0.1 0.1 0 0.7 0 0 0.1 0 0

0 0 0 0.1 0 0.6 0 0 0 0.3

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0.1 0 0 0 0 0 0.1 0 0.8


Arbitrary Noise Matrix for CIFAR-10

Table 3.11: Test Accuracy (%) for MNIST - ηest = 0.45 (arbitrary noise matrix)

Algorithm Test Accuracy

CoT [37] 95.3

CoT+ [122] 93.07

CL [68] 88.41

BARE (Ours) 95.02

Table 3.12: Avg. Test Accuracy (last 10 epochs) (%) for MNIST - ηest = 0.45 (arbitrary

noise matrix)

Algorithm Avg. Test Accuracy (last 10 epochs)

CoT [37] 95.22

CoT+ [122] 93.08

CL [68] 88.56

BARE (Ours) 95.03
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Table 3.13: Test Accuracy (%) for CIFAR10 - ηest = 0.4 (arbitrary noise matrix)

Algorithm Test Accuracy

CoT [37] 71.92

CoT+ [122] 68.56

CL [68] 72.12

BARE (Ours) 76.22

Table 3.14: Avg. Test Accuracy (last 10 epochs) (%) for CIFAR10 - ηest = 0.4 (arbitrary

noise matrix)

Algorithm Avg. Test Accuracy (last 10 epochs)

CoT [37] 71.86

CoT+ [122] 68.99

CL [68] 72.27

BARE (Ours) 75.96

3.4 Conclusions

We propose an adaptive, data-dependent sample selection scheme, BARE, for robust

learning in the presence of label noise. The algorithm relies on statistics of assigned

posterior probabilities of all samples in a mini-batch to select samples from that mini-

batch. The mini-batch statistics are used as proxies for determining current state of

learning here. Unlike other algorithms in literature, BARE neither needs an extra data

set with clean labels nor does it need any knowledge of the noise rates. Further it has

no hyperparameters in the selection algorithm. Comparisons with baseline schemes on

benchmark datasets show the effectiveness of the proposed algorithm both in terms of

performance metrics and computational complexity.

The current algorithms for sample selection in literature rely on heuristics such as
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cross-training multiple networks or meta-learning of sample weights which is often com-

putationally expensive. They also need knowledge of noise rates or some data with clean

labels which may not be easily available. From the results shown here, it seems that

relying on the current state of learning via batch statistics alone is helping the proposed

algorithm confidently pick out the clean data and ignore the noisy data (without even

the need for cross training of two networks). This, combined with the fact that there

are no hyperparameters to tune, shows the advantage that BARE can offer for robust

learning under label noise.



Chapter 4

Role of Loss Function in Robust

Learning

As mentioned in Chapter 2, the problem of learning under label noise has a long history.

In the last decade many empirical studies have demonstrated the adverse effects of label

noise on learning different classifier models such as neural networks, SVMs, decision trees

etc. (See, e.g., [83]). This, coupled with the fact that one needs large labelled data sets

for training deep networks, has attracted a lot of attention on learning under label noise.

Recently some studies have shown that deep networks are very effective in interpo-

lating the data. It was empirically shown in [123] that even when the labels in the

training data are completely randomly assigned, deep networks are capable of learning

parameters that drive training error to zero. This phenomenon has been called memo-

rization. Among other things, this study showed that deep networks are very susceptible

to overfitting under label noise and hence motivated a large number of efforts at design-

ing robust learning algorithms. In this chapter we present an empirical study on the

ability of a class of loss functions in resisting the memorization of noisy labels.

4.1 Introduction

Memorization in deep networks got a lot of attention recently due to the work of Zhang et

al. [123] which showed that standard deep network architectures are highly susceptible

to exact interpolation of data. They show that even when one completely randomly

50
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alters class labels in the training data, these networks can learn these random labels

almost exactly. That is, the SGD based learning algorithm can learn weights such that

the training error is close to zero. It is seen that this memorization of the training

samples cannot be mitigated through any of the standard regularization techniques such

as weight decay or dropout. These results seem to imply that the usual complexity

measures of statistical learning theory such as VC-dimension are possibly inadequate to

properly understand the generalization performance of deep neural networks. The main

motivation for the study is to explore this question of how to explain the generalization

performance of deep networks.

There are many further studies that address this issue and study the dynamics of this

memorization process. Arpit et al. [6] present an intetresting study that, while confirming

the memorization process, presents insights on how this happens. They formulate some

characterizations under which the learning dynamics of a network differ for the two cases

of learning from real data and random data. Their study suggests that the data itself

may be playing a vital role in resisting brute-force memorization by a network. They also

found empirical evidence to say that deep networks learn simpler patterns first before

starting to memorize the data. Similar features regarding the dynamics of memorization

have been reported in [33]. As mentioned in Chapter 3, some of the methods for robust

learning under label noise are motivated by this observation that the networks may be

learning from clean samples first before overfitting to the noisy ones. Another recent

work [25] shows that memorization is necessary for generalization for some types of

distributions which has been tested empirically by [26].

All these studies experiment with many scenarios of regularization, other optimization

techniques and randomization of data and study their effect on memorization. However,

the role that the loss function itself can play in this has not been investigated at all.

Given some of the recent results on robustness of risk minimization [30,73], it would be

interesting to investigate whether the variation of training error with learning epochs

would be qualitatively different for different loss functions. Motivated by this, here we

present some empirical rsults to show that a loss function can also play a significant role

in preventing a network from memorizing data.
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Neural networks are universal approximators [44] and networks with sufficient param-

eters have the capacity to exactly represent any finite amount of data [123]. That is, for

these networks there exist parameter values that can represent any arbitrary function.

However, as discussed in [6], what a network learns depends on the parameter values

that a gradient-based learning algorithm can reach starting from some random initial

parameter values. This learning dynamics is certainly affected, among other factors, by

the loss function because the loss function determines the topography of the empirical

risk, which is minimized by the learning algorithm. Hence, it would be interesting to

investigate whether it is possible to have loss functions that can inherently resist (to

some degree) the memorization of data by a network.

Our focus in this chapter is on the role a loss function can play in resisting memoriza-

tion. Specifically we would be looking at symmetric loss functions. Since memorization

is about training error, we will be mainly concerned with that. The other studies on

memorization normally use completely random labels. Here we look at the memorization

under varying level of label randomization. That is, we experiment with symmetric label

noise with different noise rates. This will give us some insights on how certain classes of

loss functions resist driving the training error to zero.

We present some experimental results for benchmark datasets, MNIST [59] and

CIFAR-10 [56], with labels randomly changed with different probabilities. We see that for

varying probabilities of random labelling, networks trained with standard loss functions

such as categorical cross entropy (CCE) or mean square error (MSE) exhibit memoriza-

tion by reaching close to zero training error. We show that keeping everything else in the

training algorithm same but changing the loss function to Robust Log Loss (RLL) [57]

which is a symmetric loss, results in the network significantly resisting this memorization.

We also present some theoretical justification (using the known properties of these

symmetric losses) for the ability of these loss functions to resist memorization. We

formally define what can be called resisting memorization. Using this, we explain why

symmetric loss functions can resist brute-force memorization in these scenarios, thus

providing some theoretical justification for the empirically observed performance with

RLL.

There are many works that attempt comparative study of different loss functions for



CHAPTER 4. ROLE OF LOSS FUNCTION IN ROBUST LEARNING 53

classification and regression tasks. With extensive empirical experiments on a variety of

data sets, [46] shows that MSE performs better than CCE thus challenging the conven-

tional wisdom of the superiority of CCE loss for classification tasks. It is argued in [20]

that CCE is better (compared to MSE) for multi-class settings but a technique is pro-

posed that makes performance of MSE comparable to that of CCE. It is demonstrated

in [90, 95] that MSE has comparable or better performance than hinge loss for several

tasks. It is shown in [81] that minimizers of risk obtained in case of MSE and hinge

loss are the same for overparameterized linear models under certain conditions. These

and other similar works compare different loss functions for classification and regression

tasks (using clean data) from the point of view of generalization. The material presented

here is different from all these and it looks at the role loss functions can play in affecting

the degree of memorization in overparameterized networks.

As mentioned earlier, memorization is about training error. However, as we see

here, when a loss function results in robustness to memorization, it essentially results in

learning from the data that have clean labels. Thus, this study on memorization gives

us insights that are useful in designing algorithms for robust learning under label noise.

4.2 Role of loss function in resisting memorization:

Empirical Results

We begin by first presenting some empirical results on memorization in some deep net-

works under different loss functions. We show that the symmetric loss, RLL, shows good

ressitance to memorization. We also present empirical results to show that, under RLL,

the network is actually trying to learn from data with the uncorrupted labels.

We experiment with two network architectures. One is an Inception-like network

architecture (referred to as Inception-Lite in this paper) which is same as that used

in [123] for demonstrating memorization in deep networks. The second is ResNet-32

(and ResNet-18 for MNIST) architecture as used in [101]. The details of the Inception-

Lite network architecture are provided in Figure 5.1.

We present results with three loss functions. Two are the standard loss functions used

with neural networks, namely, CCE and MSE, and the third is a symmetric loss, viz.
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RLL. Since we are considering classification problems, for all the networks we assume a

softmax output layer. For an input, x, let f(x) denote the vector output of the network

with components fi(x). When x belongs to class k, the label would be the one-hot vector

ek where ekk = 1 and ekj = 0, ∀j 6= k. Let K denote the number of classes. With this

notation, the three loss functions can be defined as follows:

LCCE(f(x), ek) = −
∑
i

eki log (fi(x)) = − log(fk(x))

LMSE(f(x), ek) =
∑
i

(fi(x)− eki)2

LRLL(f(x), ek) = log

(
α + 1

α

)
− log(α + fk(x)) +

∑
j 6=k

1

K − 1
log(α + fj(x))

where α > 0 is a parameter of the RLL.

We can get some insights on behaviour of RLL versus CCE as follows: When x is

in class-k, fk(x) is the posterior probability assigned to class-k by the network. If this

is high, then the CCE loss, which is − log(fk(x)), is low. However, the CCE loss is

unbounded because, in principle, there can be network functions such that fk(x) can

be arbitrarily small. Disregarding the constant term, the RLL takes − log(α + fk(x)) +∑
j 6=k

1
K−1 log(α + fj(x)) as its value. Since we are using log(α + fj(x)) rather than

log(fj(x)), the loss is now bounded. More importantly, the loss is essentially determined

through a kind of comparison of the posterior probability assigned to class-k by the

network against the average probability assigned to all other classes. (The constant

term in RLL is there only to ensure that the loss is non-negative). As we shall see, this

gives some amount of robustness in the risk minimization resulting in RLL exhibiting

good resistance to memorization.

We train all the networks to minimize empirical risk (with each of the loss functions).

We employ mini-batch based stochastic gradient descent (SGD) for Inception-Lite &

ResNet-32 (for CIFAR-10) and Adam [55] for ResNet-18 (for MNIST). For Inception-

Lite, we use a constant step-size of 0.01 in each epoch which is reduced by a factor of 0.95

after each epoch for 100 epochs whereas a constant step-size of 0.1 is used for ResNet-32

which is reduced by a factor of 0.1 after 100 and 150 epochs. ResNet-32 & ResNet-18 are

trained for 200 epochs. The ResNet-18 is trained with a step-size of 0.001. Inception-Lite
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Figure 4.1: Training set accuracies for ResNet-32 ((a) & (b)) & Inception-Lite ((c) &

(d)) trained on CIFAR-10 with CCE and MSE losses for for η ∈ {0., 0.2, 0.4, 0.6}

is trained for 100 epochs because the training accuracies saturate by then. Inception-

Lite and ResNet-18 are trained without weight decay whereas ResNet-32 is trained with

a weight decay of 0.0001. The implementations use NumPy [40], scikit-learn [88], and

PyTorch [85]. All the codes for these experiments are available here: https://github

.com/dbp1994/masters thesis codes/tree/main/memorization and overparam

CIFAR-10 and MNIST benchmark datasets are used for the experiments. As ex-

plained earlier, we study the memorization by the networks through randomly altering

the class labels in the training set. For this, independently for each sample, we retain

the original label with probability (1 − η) and change it with probability η. When the

label is changed, it is changed to one of the other classes with equal probability. We

experiment with η = 0, 0.2, 0.4, and 0.6. (Note that η = 0 corresponds to the clean or

original training data). That is, we are introducing symmetric label noise with different

noise rates.

Figure 4.1 shows the training accuracies achieved with ResNet-32 and Inception-Lite

when we train the network with CCE & MSE for various values of η on CIFAR-10. As

can be seen from the figure, the training accuracy goes to 100% for these two networks

with both the loss functions, CCE and MSE. With increasing noise rate, it takes more

epochs to reach 100% training accuracy. But, even with noise rate of 60% the networks

are able to perfectly fit the noisy labels.

Figure 4.2 shows training accuracies of ResNet-18 with CCE and MSE for MNIST.

Even though this is a smaller network, when we train it with CCE, we still get 100%

training accuracy irrespective of the noise rate showing that the network perfectly fits

https://github.com/dbp1994/masters_thesis_codes/tree/main/memorization_and_overparam
https://github.com/dbp1994/masters_thesis_codes/tree/main/memorization_and_overparam
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Figure 4.2: Training set accuracies for ResNet-18 trained on MNIST with CCE and MSE

losses for different levels of label noise
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Figure 4.3: Training set accuracies for networks trained on CIFAR-10 ((a) & (c)) &

MNIST ((b)) with RLL for η ∈ {0., 0.2, 0.4, 0.6}

the random labels. Under MSE, for noisy data, the training accuracy has not become

100% by 200 epochs. However, as is clearly seen from the trend in the graph, the training

acuracies under different noise rates are increasing, coming together and going towards

100%. Our experimental results are consistent with the results reported in [6, 123] for

CCE loss. (All studies in memorization considered only CCE loss). (Note that [123]

show training set performances only for η = 1 and do not experiment with varying

levels of noise as was done here.) Note that at η = 0.2, 80% of training samples of a

class are correctly labelled and hence would contain the patterns that the network would

have learnt when trained with clean data. However, the network ends up learning a

function that can exactly reproduce the training set labels. This seems to indicate that

with these loss functions the topography of the empirical risk function is such that the

learning dynamics takes the network to a point that fits the random labels exactly.

These results may be contrasted with those presented in Figure 4.3 which are obtained
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when the same networks are trained with RLL for different values of η on MNIST &

CIFAR-10. As can be seen from the figures, the training set accuracy achieved by RLL

for non-zero values of η is always well below that achieved on clean data. Also the

accuracy achieved is lower for a higher value of η. The training set accuracies saturate

and stay constant after about 100 epochs showing that even if we train the network for

another 100 epochs we cannot make it fit the random labels exactly. This shows that the

network does not blindly learn to reproduce the training set labels. This is significant

because this shows that when we keep everything else same and change only the loss

function, the learning dynamics now seem to be able to resist brute-force memorization.

Also, for η = 0.2 and η = 0.4, the difference in training-accuracy on clean and noisy data

is almost equal to the noise-rate thus suggesting that this loss function seems to be able

to disregard data that are wrongly labelled.

We now take a closer look to understand the kind of classifier learnt by RLL under

noisy data. We use the same notation as in the earlier chapters. Let {xi, ycli }`i=1 de-

note the original training data (with ‘clean’ labels) and let {xi, yi}`i=1 denote the noisy

or randomly-labelled data given to the learning algorithm. Let f(x) be the function

represented by the network and let h(x) = arg maxi fi(x) denote the actual class label

predicted by the network for x. Then the training accuracy, say J1, is defined by

J1 =
1

`

∑̀
i=1

I[h(xi)=yi)]

where IA is indicator of A. This is, the accuracy defined with respect to the labels as

given in the training set. We define another accuracy, J2, by

J2 =
1

`

∑̀
i=1

I[h(xi)=ycli )]

J2 is the accuracy, of the same network h, but with respect to original, uncorrupted or

clean training set. This accuracy indicates how well the network, learned with randomly-

altered labels, would be able to reproduce the original clean labels of the training data.

Note that J2 cannot be considered as the test accuracy. We are measuring accuracy of

predictions on the same xi as in the training set but with respect to the unaltered labels.
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Figure 4.4: J1 and J2 accuracies for Inception-Lite ((a) & (b)) & ResNet-18 ((c) & (d))

trained on CIFAR-10 and MNIST resp. for η ∈ {0., 0.2, 0.4, 0.6} (Solid lines show J1

accuracy; dashed lines show J2 accuracy)

We show in Figure 4.4 the accuracies J1 and J2 for networks learned with the different

loss functions for different values of η. As can be seen from Figures 4.4(a) & 4.4(c) for

networks trained with CCE and MSE losses, the final J2 accuracy (dashed line) is always

below the final J1 accuracy (solid line). This shows that these networks are better at

predicting the training labels (which are randomly altered ones) of the training data

rather than the original labels of the training data. This is as expected because, as

seen earlier, the training accuracy, which is equal to J1, is close to 100%. However, for

networks learned with RLL (Figure 4.4(b) & 4.4(d)), it is the J2 accuracy (dashed line)

that is always higher than the J1 accuracy (solid line). As a matter of fact, for η = 0.2, 0.4,

the J2 accuracy of the networks learned using RLL is close to the training accuracy

achieved with clean data. This suggests that this loss function is able to disregard the

randomly altered labels and help the network learn a classifier that it would have learned

with clean data.

There is another interesting point about this figure. The figure shows how the J1 and

J2 accuracies evolve with epochs. As can be seen from the figure, the networks learned

using CCE with noisy data seemed to have initially tried to learn the patterns and thus

the J2 accuracy is higher in the early epochs. But eventually the network ‘flips’ and

fits the random labels in training data. However, this ‘flip’ never happens for networks

trained using RLL; through all the epochs, the J2 accuracy stays higher.

All the empirical results presented in this section amply demonstrate that a loss

function can play a significant role in mitigating the memorization effect observed with
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deep neural networks. In the next section, we present some theoretical analysis that

explains, to some extent, the results presented in this section.

4.3 Robustness of Symmetric Loss Functions

In [123], for networks learned using training data with random labels, the accuracy

obtained on part of the original data is taken as test error for the purpose of discussing the

generalization abilities. However, this may be somewhat of an inaccurate nomenclature.

Normally the test error is error on new data but drawn from the same distribution as that

from which training data is drawn. However, we can formalize the notion of resisting

memorization in a manner similar to the way we defined inherent robustness to label

noise in Chapter 1 (Equation 1.11). We start with such a definition and later slightly

modify it to capture the notion of memorization which is about training error.

For this section, for simplicity of notation, we assume class labels, yi, take values in

Y = {1, · · · , K} rather than being one-hot vectors. Except for this, we follow the same

notation as earlier. Let S = {xi, ycli }`i=1 be the original training data and we assume it is

drawn iid according to a distribution D. The training data with randomly altered labels

is denoted by Sη = {xi, yi}`i=1, and we assume this is corrupted by symmetric noise with

rate η. Thus, for each i,

yi =

 ycli with probability 1− η
j ∈ Y − {ycli } with probability η

K−1

(4.1)

We denote the distribution from which Sη is drawn as Dη. and it is related to D as given

above.

When one is investigating memorization of random labels, one is using training data

drawn according to distributionDη but is interested in test error according to distribution

D. As a matter of fact, we want the learnt network to do well on data only from D; we

do not want it to learn distribution Dη. Hence, we can formally define being robust to

memorization in the same way as being robust to label noise.

Let h and hη denote the classifier function (network) learned by an algorithm when

given S and Sη as training data, respectively. We can say that an algorithm resists
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memorization if

Prob(X,y)∼D[h(X) = y] = Prob(X,y)∼D[hη(X) = y] (4.2)

. What this means is that the accuracy on the original distribution achieved by the two

networks – one learnt with noisy data and the other with the original clean data – is the

same.

As mentioned earlier, memorization is about training error. We only want to look

at the training error with and without label noise. If training error with noisy labels

also goes to zero, we want to call it memorization. So, resisting memorization should

be about learning original labels (rather than blindly memorize the randomly altered

labels) for the training data patterns. However, the probabilities above are with respect

to underlying distribution from which training data is drawn. In this sense, the above

definition does not capture the notion of memorization well.

We can modify the definition by simply taking D to be the empirical distribution de-

termined by training set S. Then the above definition is satisfactory because we are now

talking strictly about training error. Thus the final definition we use for memorization

is as follows.

Let h and hη denote the classifier function (network) learned by an algorithm when

given S and Sη as training data, respectively. We can say that an algorithm resists

memorization if
1

m

m∑
i=1

I{h(xi)=ycli } =
1

m

m∑
i=1

I{hη(xi)=ycli } (4.3)

The LHS of Equation (4.3) is what we called J1 accuracy under the original or clean

data. The RHS of Equation (4.3) is what we called J2 accuracy. So, a learning algorithm

ideally resists memorization if the J2 accuracy achieved by it under randomly altered

labels is equal to J1 accuracy on original clean data. As we saw in the previous section,

performance of empirical risk minimization with RLL is reasonably close to this ideal

behaviour.

For the rest of this section we take D to be the empirical distribution defined by S.

Remark: Note that when we define resistance to memorization using the empirical
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distribution, the definition is dependent on a training set, S. In the literature, memo-

rization is explored with respect to specific data sets such as MNIST or CIFAR. Hence,

it may be alright to ask whether an algorithm resists memorization of a specific data

set. To be more rigorous, we can define an algorithm to be resisting memorization if

it can resist memorization of any training set, S, drawn from D. But that may be too

stringent.

We next explore the connection between symmetric losses and memorization. As

mentioned earlier, RLL is a symmetric loss [57]. Let us recall definition of symmetric

loss.

Definition: A loss function L is called symmetric if ∃ C ∈ R+ such that

K∑
j=1

L(f(x), j) = C, ∀f, ∀x

That is, given any network (or function) f and any input x, if we sum the loss values

over all class labels, it should give the same constant. Recall from Chapter 1 that a

symmetric loss is bounded in the sense that L(f(x), j) ≤ C, ∀f, ∀x, ∀j.
The following theorem gives some theoretical justification for the observed perfor-

mance of RLL. The theorem is applicable for any general distributions D and Dη under

symmetric label noise. We can use it to understand resistance to memorization by taking

D to be the empirical distribution defined by S and Dη to be the distribution related

to D as defined by Equation (4.1). (We denote by (x, yclx ) the random variable with

distribution D and (x, yx) the random variable with distribution Dη).
Theorem 1 Let L be a symmetric loss, D and Dη be as defined above. Assume

η < K−1
K

. The risk of h over D and over Dη is RL(h) = ED[L(h(x), yclx )] and Rη
L(h) =

EDη [L(h(x), yx)] respectively. Then, given any two classifiers h1 and h2, if RL(h1) <

RL(h2), then Rη
L(h1) < Rη

L(h2) and vice versa.

Proof (This follows easily from the proof of Theorem 1 in [30].) Given the way the

randomized labels are generated, we have

Rη
L(h) = Ex,yxL(h(x), yx)

= ExEyclx |xEyx|x,yclx L(h(x), yx)
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= ExEyclx |x

(1− η)L(h(x), yclx ) +
η

K − 1

∑
i 6=yclx

L(h(x), i)


= (1− η)RL(h) +

η

K − 1
(C −RL(h))

=
Cη

K − 1
+

(
1− ηK

K − 1

)
RL(h)

where C is the constant in the symmetry condition on the loss function and K is the

number of classes. Since η < K−1
K

, we have (1− ηK
K−1) > 0. Hence, the above shows that

whenever RL(h1) < RL(h2), we get Rη
L(h1) < Rη

L(h2) and vice versa. This completes the

proof. �

Theorem 1 shows that the symmetric loss maintains the risk ranking of different

networks regardless of random flipping of labels (as long as η < K−1
K

). Since we are

taking the distributions to be empirical distributions of the training data, this implies

that, fixing a training set, any local minimum of empirical risk under randomly flipped

labels would also be a local minimum of risk under original labels if the loss function is

symmetric. This explains the empirical results presented in the previous section regarding

the ability of RLL to resist memorization.

This theorems tells us why empirical risk minimization with a symmetric loss such

as RLL would resist memorization. However, there is one caveat. When we are given

data with randomly altered labels the algorithm goes to a local minimum of empirical

risk under noisy distribution. The theorem above guarantees that this is also a local

minimum of empirical risk under clean training data too. However, when we do empirical

risk minimization with clean data we may reach some other (and better) local minimum.

That is the reason why though RLL will prevent minimization to a good degree, it does

not have the ideal behavious (where J2 accuracy would be same as J1 accuracy on clean

data). If our algorithm is guaranteed to take us to a global minimizer of empirical risk

(with a symmetric loss function) then the above theorem implies we will realize the ideal

behaviour.

There are other losses that satisfy the symmetry condition, e.g., 0–1 loss, mean

absolute value of error (MAE), etc.

It is easy to verify that neither CCE nor MSE satisfy the symmetry condition. Though

the symmetry of loss is only a sufficient condition for robustness, this may provide an
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explanation of why risk minimization with these losses results in memorization.

As mentioned earlier, the symmetry condition implies that the loss function is bounded.

That is, for any arbitrary network, f , and for any x, we must have L(f(x), i) < C, ∀i ∈ Y
where C is a fixed constant. Given a bounded loss function we can satisfy the symmetry

condition by ‘normalizing’ it. Given a bounded loss L, define L̄ by

L̄(f(x), j) =
L(f(x), j)∑
s L(f(x), s)

It is easy to see that L̄ satisfies the symmetry condition. As mentioned earlier, CCE loss

is unbounded and hence normalization would not turn it into a symmetric loss. However,

we can normalize MSE loss.
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Figure 4.5: Train. accuracy and J1 & J2 accuracies for Inception-Lite ((a) & (c)) &

ResNet-18 ((b) & (d)) trained on CIFAR-10 and MNIST resp. for η ∈ {0., 0.2, 0.4, 0.6}
(Solid lines show J1 accuracy; dashed lines show J2 accuracy)

In Figure 4.5 we show results obtained using normalized MSE. Once we normalize

MSE, it no longer fits the data with random labels perfectly; the training accuracy now

saturates at a value well below 100% and it behaves more like RLL now.

The empirical results presented in the previous section adequately demonstrate that

the loss function can play a crucial role in mitigating the tendency of deep networks to

memorize the training samples. The analysis presented here provides an explanation for

this ability of RLL to resist such memorization. As a mater of fact, if the loss function is

symmetric it would have such robustness and we can normalize a bounded loss to satisfy

the symmetry condition.
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4.4 Conclusions

Many recent studies have shown that overparameterized deep networks seem to be capa-

ble of perfectly fitting even randomly-labelled data. This phenomenon of memorization

in deep networks has received a lot of attention because it raises important questions

on how to understand generalization abilities of deep networks. In this chapter we have

shown through empirical studies that changing the loss function alone can significantly

change the memorization in such deep networks. We showed this happens when the

loss function is symmetric. We have provided some theoretical analysis to explain the

empirical results. The results presented here suggest that choice of loss function can play

a critical role in overfitting by deep networks and hence in the design of algorithms for

robust learning. We also feel that the study presented here can be useful in getting more

insights in the understanding of generalization abilities of deep networks.



Chapter 5

Conclusions

This thesis presents some investigations on the problem of robust supervised learning

under label noise using neural networks. In most supervised learning applications one

needs to handle label noise. This is because large scale labelled data sets are obtained

through mechanisms such as crowd-sourcing. Random labelling errors due to human

errors, subjective biases, and so on also makes label noise invetible in many cases. In

Chapter 1 we discussed the relevance of studying this problem and what robust learning

under label noise means.

In Chapter 2 we presented a detailed review of the existing methods for tackling label

noise most of which are heuristics-based and do not have a guarantee for robust learning.

We focus on one of the recent and popular approaches, namely, sample reweighting, in

more detail in Chapter 3.

In Chapter 3 we proposed a new sample selection strategy for robust learning under

label noise which we called BAtch REweighting (BARE). It can be viewed as an adaptive

curriculum based learning and focuses on the current state of learning, in a given mini-

batch, for identifying the noisily-labelled data in it. For this, the statistics of posterior

probabilities of all samples in a mini-batch are used to compute the threshold for sample

selection. This yields an adaptive curriculum where the sample selection is naturally

tied to state of learning. Our algorithm does not need any clean validation data, needs

no knowledge at all of the noise rates and also does not have any hyperparameters.

We empirically demonstrated the effectiveness of our algorithm on three benchmark

datasets, namely, MNIST and CIFAR-10 and Clothing-1M. We showed that, in terms

65
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of robustness, it is as good as or better than all the state of art methods for sample

reweighting or sample selection. We also showed that it is much more efficient in terms

of time taken for learning.

In Chapter 4 we study ‘memorization’ in neural network. This is the phenomenon of

the learning algorithm converging to weights that result in zero (or close to zero) training

error even when training data is randomly labelled. Memorization is seen to be a cause for

poor performance of overapameterized neural networks to generalize well on unseen data

if the training data has label noise. None of the studies on memorization investigated

the role played by the loss function. Since memorization is about finding certain kinds

of local minima in the empirical risk, the loss function should be playing a crucial role

here. In Chapter 4 of the thesis we presented an empirical study, using data sets MNIST

and CIFAR-10, on how the choice of loss function affects memorization. We showed that

a special class of loss functions, namely, symmetric losses, can resist memorization to a

good degree. We formally defined what ‘resisting memorization’ means and used some

known properties of symmetric loss functions to provide some theoretical justifications

for the empirical results.

Future Work

Given the effectiveness of BARE in selecting clean samples and providing robustness

against label noise as seen in the empirical results, a potential future direction is to better

understand how and why the batch statistics help the algorithm reliably select good

samples. Another potential future direction is to identify other and better proxies for

current state of learning apart from batch statistics that offer such robustness. Another

interesting direction in which the algorithm can be explored further is to see whether we

can add label cleaning on top of the sample selection given by BARE.

In the context of ‘memorization’, a theoretical understanding of the effect different

classes of loss functions can have on the optimization landscape is needed to better

understand the role of loss functions. This would also be helpful in getting a theory

of robust learning under label noise. This can be a future direction. It will also be

interesting to understand how do symmetric losses automatically identify noisy data (in
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as much as they do not overfit for them). This would help find new mechanisms for

identification of noisy data.



Appendix

The Inception-Lite architecture used for experiments in Chapter 4 is described here1:

Figure 5.1: Inception-Lite

1Source: https://arxiv.org/pdf/1611.03530.pdf
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