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The question at the heart of this paper

How can two neural networks be designed and trained  
to compute a solution to a zero-sum game?



Success of Deep Learning

https://shorturl.at/6Oxs4
https://shorturl.at/ya6zQ

https://shorturl.at/eXGBPhttps://shorturl.at/2COlv



How Theory Tries to Understand Success of Deep Learning

Image Source: https://www.cs.umd.edu/~tomg/project/landscapes/



How big a neural network should be  
so that vanilla methods like (S)GD can 

converge to global optima?

Naturally we may ask…



Rise of Multi-Agent Learning Applications

https://shorturl.at/e7Xbw

https://shorturl.at/I0g1phttps://shorturl.at/Opeki https://shorturl.at/DH09f

https://shorturl.at/krf6V



• We are now modelling multiple agents learning and making decisions in a non-
stationary environment that can react to these decisions. For example,


• Agents having conflicting interests/objectives 


• Adversaries that can change/corrupt the data/distribution (label noise, 
distribution shifts)


• Enforce constraints on learnt models such as those relating to causal 
inference, privacy, and fairness (and more).


• This work: Two-player zero-sum games  Focus on MIN-MAX 
optimization.

⟹

Rise of Multi-Agent Learning Applications



Moreover, let’s recall that…

Generative Adversarial Networks 
 [Goodfellow et al. 16]



• Environments with large, possibly continuous state and action spaces (e.g. 
StarCraft II, Go, etc.)


• Neural networks have universal approximation property


• Encoding agents’ strategies/policies with neural networks  Richer 
strategic behaviour


• This work: Players are 1-hidden layer (i.e. shallow) neural networks.
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Hidden Games



Input Games 

•Parameters  are fixed


•Optimising over inputs


•Example: Adversarial example generation

θ, ϕ

Quick Look: Hidden(-Convex/Concave) Zero-Sum Games

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))
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How big a neural network should be so 
that vanilla methods like (S)GD AltGDA can 
converge to global optima a saddle point?

Naturally we may ask…



Input Games 

Theorem 1 (Informal). For -reg. 
bilinear zero-sum hidden games, w.h.p. 
AltGDA converges to -saddle point if both 
shallow neural network players have a 
“good” Gaussian random init. 
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ε

Our Results
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Neural Games 

Theorem 2 (Informal). For a broad class of 
hidden-convex-concave zero-sum games, 
w.h.p. AltGDA converges to a saddle point 
if both shallow neural network players have 
a “good” Gaussian random init. and if their 
hidden-layer widths scale as  where  is 
the size of the dataset.

n3 n
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