
Solving Neural Min-Max Games:
The Role of Architecture, Initialization & Dynamics

Deep Patel* & Manolis Vlatakis (UW-Madison)
NeurIPS 2025 (Spotlight)

The question at the heart of this paper

How can two neural networks be designed and trained
to compute a solution to a zero-sum game?

Success of Deep Learning

https://shorturl.at/6Oxs4
https://shorturl.at/ya6zQ

https://shorturl.at/eXGBPhttps://shorturl.at/2COlv

How Theory Tries to Understand Success of Deep Learning

Image Source: https://www.cs.umd.edu/~tomg/project/landscapes/

How big a neural network should be
so that vanilla methods like (S)GD can

converge to global optima?

Naturally we may ask…

Rise of Multi-Agent Learning Applications

https://shorturl.at/e7Xbw

https://shorturl.at/I0g1phttps://shorturl.at/Opeki https://shorturl.at/DH09f

https://shorturl.at/krf6V

• We are now modelling multiple agents learning and making decisions in a non-
stationary environment that can react to these decisions. For example,

• Agents having conflicting interests/objectives

• Adversaries that can change/corrupt the data/distribution (label noise,
distribution shifts)

• Enforce constraints on learnt models such as those relating to causal
inference, privacy, and fairness (and more).

• This work: Two-player zero-sum games Focus on MIN-MAX
optimization.

⟹

Rise of Multi-Agent Learning Applications

Moreover, let’s recall that…

Generative Adversarial Networks
 [Goodfellow et al. 16]

• Environments with large, possibly continuous state and action spaces (e.g.
StarCraft II, Go, etc.)

• Neural networks have universal approximation property

• Encoding agents’ strategies/policies with neural networks Richer
strategic behaviour

• This work: Players are 1-hidden layer (i.e. shallow) neural networks.

⟹

Rise of Multi-Agent Learning Applications

• Environments with large, possibly continuous state and action spaces (e.g.
StarCraft II, Go, etc.)

• Neural networks have universal approximation property

• Encoding agents’ strategies/policies with neural networks Richer
strategic behaviour

• This work: Players are 1-hidden layer (i.e. shallow) neural networks.

⟹

Rise of Multi-Agent Learning Applications

Hidden Games

Input Games

•Parameters are fixed

•Optimising over inputs

•Example: Adversarial example generation

θ, ϕ

Quick Look: Hidden(-Convex/Concave) Zero-Sum Games

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

Input Games

•Parameters are fixed

•Optimising over inputs

•Example: Adversarial example generation

θ, ϕ

Quick Look: Hidden(-Convex/Concave) Zero-Sum Games

Loss is non-convex
(non-concave) in ()

L
θ ϕ

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

Input Games

•Parameters are fixed

•Optimising over inputs

•Example: Adversarial example generation

θ, ϕ

Quick Look: Hidden(-Convex/Concave) Zero-Sum Games

Loss is non-convex
(non-concave) in ()

L
θ ϕ

Loss is convex (concave) in
 ()

L
F(⋅ ; θ) G(⋅ ; ϕ)

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

Input Games

•Parameters are fixed

•Optimising over inputs

•Example: Adversarial example generation

θ, ϕ

Quick Look: Hidden(-Convex/Concave) Zero-Sum Games

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

Neural Games

•Optimize over parameters for given data

•GANs, DIRL, etc.

θ, ϕ

(θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

Input Games

•Parameters are fixed

•Optimising over inputs

•Example: Adversarial example generation

θ, ϕ

Quick Look: Hidden(-Convex/Concave) Zero-Sum Games

Loss is non-convex
(non-concave) in ()

L
θ ϕ

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

Neural Games

•Optimize over parameters for given data

•GANs, DIRL, etc.

θ, ϕ

(θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

Input Games

•Parameters are fixed

•Optimising over inputs

•Example: Adversarial example generation

θ, ϕ

Quick Look: Hidden(-Convex/Concave) Zero-Sum Games

Loss is non-convex
(non-concave) in ()

L
θ ϕ

Loss is convex (concave) in
 ()

L
F(⋅ ; θ) G(⋅ ; ϕ)

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ)) (θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

Neural Games

•Optimize over parameters for given data

•GANs, DIRL, etc.

θ, ϕ

How big a neural network should be so
that vanilla methods like (S)GD AltGDA can
converge to global optima a saddle point?

Naturally we may ask…

Input Games

Theorem 1 (Informal). For -reg.
bilinear zero-sum hidden games, w.h.p.
AltGDA converges to -saddle point if both
shallow neural network players have a
“good” Gaussian random init.

ε − ℓ2

ε

Our Results

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

Input Games

Theorem 1 (Informal). For -reg.
bilinear zero-sum hidden games, w.h.p.
AltGDA converges to -saddle point if both
shallow neural network players have a
“good” Gaussian random init.

ε − ℓ2

ε

Our Results

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ)) (θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

Neural Games

Theorem 2 (Informal). For a broad class of
hidden-convex-concave zero-sum games,
w.h.p. AltGDA converges to a saddle point
if both shallow neural network players have
a “good” Gaussian random init. and if their
hidden-layer widths scale as where is
the size of the dataset.

n3 n

Thank you!

Poster ID: 119822
Thu 4 Dec (4:30—7:30 PM)

