
*NeurIPS 2025 (Spotlight)

Solving Neural Min-Max Games:
The Role of Architecture,
Initialization & Dynamics*

Deep Patel & Manolis Vlatakis (UW-Madison, USA)

16th July 2025

Question at the heart of this talk

How can two neural networks be designed and trained
to compute a solution to a zero-sum game?

Outline

• Chapter 1: Preliminaries

• Chapter 2: From to

• Chapter 3: Hidden(-Convex-Concave) Games

• Chapter 4: Our Results

MIN MIN-MAX

Chapter 1: Preliminaries

Success of Deep Learning

https://shorturl.at/GuvKT https://shorturl.at/38aUehttps://shorturl.at/4VGKL

https://shorturl.at/mlTfn

Success of Deep Learning

https://shorturl.at/6Oxs4
https://shorturl.at/ya6zQ

https://shorturl.at/eXGBPhttps://shorturl.at/2COlv

How Theory Tries to Understand Success of Deep Learning

Image Source: https://www.cs.umd.edu/~tomg/project/landscapes/

How big a neural network should be
so that vanilla methods like (S)GD can

converge to global optima?

Naturally we may ask…

Formally, we want to know…

• Loss function (e.g. MSE, CCE, etc.)

• underlying data distribution

• Neural network (e.g. MLPs, ResNets, CNNs, etc.)

How many parameters should the network have so that vanilla methods like
SGD can converge to a global optima ?

θ⋆ ∈ arg min
θ∈ℝm

𝔼(x,y)∼Pxy [L(f(x; θ), y)]
L : ℝdout × ℝ → ℝ≥0

Pxy

f(⋅ ; θ) : ℝdin → ℝdout

f
θ⋆

*On the Convergence of Encoder-only Shallow Transformers (NeurIPS’23)

Ch. 2: From to MIN MIN-MAX

Rise of Multi-Agent Learning Applications

https://shorturl.at/e7Xbw

https://shorturl.at/I0g1phttps://shorturl.at/Opeki https://shorturl.at/DH09f

https://shorturl.at/krf6V

MIN MIN-MAX Optimization

• We are now modelling multiple agents learning and making decisions in a
non-stationary environment that can react to these decisions. For example,

• Agents having conflicting interests/objectives

• Adversaries that can change/corrupt the data/distribution (label noise,
distribution shifts)

• Enforce constraints on learnt models such as those relating to causal
inference, privacy, and fairness (and more).

• MIN can now be viewed as a Single-Agent Learning problem.

MIN MIN-MAX Optimization

• We are now modelling multiple agents learning and making decisions in a
non-stationary environment that can react to these decisions. For example,

• Agents having conflicting interests/objectives

• Adversaries that can change/corrupt the data/distribution (label noise,
distribution shifts)

• Enforce constraints on learnt models such as those relating to causal
inference, privacy, and fairness (and more).

• MIN can now be viewed as a Single-Agent Learning problem.

However, making Gradient Descent analogs “work” for
MIN-MAX problems is hard due to “cycling” issues

(more on this soon).

Natural Question: How big a neural network
should be so that vanilla methods like SGD AltGDA

can converge to global optima a saddle point?

More formally, we want to know…

• Loss function

• data distribution

• Neural networks , (e.g. MLPs, ResNets,
CNNs, etc.)

How many parameters should the networks have so that vanilla methods like
AltGDA can converge to a saddle point ?

(θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]
L : ℝd(F)

out × ℝd(G)
out → ℝ≥0

Pxx′￼

F(⋅ ; θ) : ℝd(F)
in → ℝd(F)

out G(⋅ ; ϕ) : ℝd(G)
in → ℝd(G)

out

F, G
(θ⋆, ϕ⋆)

Can we just expect AltGDA to converge
to saddle points (just like in the case of

(S)GD for global optima)?

No… Hard to avoid “cycles”

• [BGP20] Finite Regret and Cycles with Fixed Step-Size via Alternating Gradient Descent-Ascent

• Bilinear Matrix Games known to exhibit cycling behaviour (AltGDA with fixed step-sizes)

• Shapley (1964)* proved that in the game pictured here (a nonzero-sum version of Rock, Paper,
Scissors), if the players start by choosing (a, B), the play will cycle indefinitely.

*Some topics in Two-Person Games (1964)

No… Hard to avoid “cycles”

• Cycling in Adversarial learning (2018)

• In a long run, every FTRL exhibits Poincaré Recurrence wandering around the
equilibrium in a zero sum game.

• Training GANs with Optimism (2018)

• Optimistic Mirror Descent exhibits the last-iterate convergence property in a zero
sum game.

• The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization (2018)

• The limits points of OMD are a superset of the local min-max solutions in a zero
sum game.

Moreover, let’s recall that…

Generative Adversarial Networks
 [Goodfellow et al. 16]

So let’s focus on a class of min-max
games that capture as many of the current

deep learning applications as possible!

So let’s focus on a class of min-max games that
capture as many of the current deep learning
applications as possible and yet avoid cycles!

So let’s focus on a class of min-max games that
capture as many of the current deep learning
applications as possible and yet avoid cycles!Hidden Games

Chapter 3: Hidden(-Convex-
Concave) Games

Hidden(-Convex/Concave) Games

(θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

Loss is non-convex
(non-concave) in ()

L
θ ϕ

Hidden(-Convex/Concave) Games

(θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

Loss is non-convex
(non-concave) in ()

L
θ ϕ

Loss is convex (concave) in
 ()

L
F(⋅ ; θ) G(⋅ ; ϕ)

Convergence Results for Hidden Games

Convergence Results for Hidden Games

continuous dynamics

GDA

PHGD

AltGDA

General, constrained case

Also check out (12:00 — 12:30):

“Solving Hidden Monotone Variational Inequalities with
Surrogate Losses”

Convergence Results for Hidden Games

continuous dynamics

GDA

PHGD

AltGDA

General, constrained case

Let’s take a closer look at hidden
(convex) optimization

Hidden Convex Optimization

• Consider the following objective in above:

min
θ∈Θ

F(θ) := H(c(θ)) (⋆)

F(θ) (⋆)

F(θ) = ∥Aθ − b∥2

H(⋅) := ∥⋅∥2

c(θ) := Aθ − b

Hidden Convex Optimization

• Consider the following objective in above:

 -strongly-convex

 invertible operator

• This is now a hidden-convex optimization problem

min
θ∈Θ

F(θ) := H(c(θ)) (⋆)

F(θ) (⋆)

H(⋅) := ∥⋅∥2 H(⋅) := μ

c(θ) := Aθ − b c(θ) :=

Hidden Convex Optimization (Formally)

This problem is -hidden convex if the following hold true:

• Domain is convex. Function () satisfies the following*

• The map is invertible. There exists s.t.

min
θ∈Θ

F(θ) := H(c(θ)) (⋆)

(μc, μH)

𝒰 = c(Θ) H : 𝒰 → ℝ μH ≥ 0

H((1 − λ)u + λv) ≤ (1 − λ)H(u) + λH(v) −
(1 − λ)λμH

2
∥u − v∥2 ∀u, v ∀λ ∈ [0,1]

c : Θ → 𝒰 μc > 0

∥c(θ) − c(θ′￼)∥ ≥ μc∥θ − θ′￼∥ ∀θ, θ′￼ ∈ Θ

*and convex reformulation of admits a solution)(⋆) u⋆ ∈ 𝒰

Hidden Convex Optimization (Formally)

This problem is -hidden convex if the following hold true:

• Domain is convex. Function () satisfies the following*

• The map is invertible. There exists s.t.

min
θ∈Θ

F(θ) := H(c(θ)) (⋆)

(μc, μH)

𝒰 = c(Θ) H : 𝒰 → ℝ μH ≥ 0

H((1 − λ)u + λv) ≤ (1 − λ)H(u) + λH(v) −
(1 − λ)λμH

2
∥u − v∥2 ∀u, v ∀λ ∈ [0,1]

c : Θ → 𝒰 μc > 0

∥c(θ) − c(θ′￼)∥ ≥ μc∥θ − θ′￼∥ ∀θ, θ′￼ ∈ Θ

*and convex reformulation of admits a solution)(⋆) u⋆ ∈ 𝒰

Lipschitzness of the inversion
condition-number of

≈
c−1(⋅)

Strong convexity of the “latent”
strongly convex landscape

Hidden Convex Optimization

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

Stochastic Optimization under Hidden Convexity (2023)

Hidden Convex Optimization

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

Stochastic Optimization under Hidden Convexity (2023)

The smaller the gradient
Closer to the minimum

Hidden Convex Optimization

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

Stochastic Optimization under Hidden Convexity (2023)

Greater latent convexity,
smoother inversion,
nearer the minimum.

Hidden Convex Optimization

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

Stochastic Optimization under Hidden Convexity (2023)

Hidden Strongly Convex PŁ-condition⟹

Quick Primer on PŁ-condition

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

https://shorturl.at/gfQd5

Quick Primer on PŁ-condition

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

https://arxiv.org/pdf/2107.10123

Quick Primer on PŁ-condition

• “Generalisation” of strong convexity condition whilst still guaranteeing linear
convergence rates for Gradient Descent method

• -strongly-convex -PŁ condition

• -PŁ condition -strongly-convex (or convex!)

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

μ ⟹ μ

μ ⟹ μ

Back to Hidden Convex Optimization

What we have is:

• -hidden-strongly-convex -PŁ condition

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

(μc, μH) ⟹ μ2
c μH

Hidden Convex Optimization

What we have is:

• -hidden convex -PŁ condition

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

(μc, μH) ⟹ μ2
c μH

μc ≡

c(θ)

Intuition
μc ≡

c(θ)

If then NN-map loses
part(s) of the Strategy Space!!!

σmin = 0

Checking Hidden (Strong) Convexity

Q-1. Is Assumption 2 correct?

Checking Hidden (Strong) Convexity

Q-1. Is Assumption 2 correct?

Q-1. Is it true that ?σ2
min(J(θ)) > 0

Checking Hidden (Strong) Convexity

Q-2. Assumption 2 holds for all parameter iterates?

Checking Hidden (Strong) Convexity

Q-2. Assumption 2 holds for all parameter iterates?

Q-2. Is σ2
min(J(θt)) > 0 ∀t ∈ {0,…, T}

Checking Hidden (Strong) Convexity

Q-1. Is it true that ?

Q-2. Is

How are Q-1 and Q-2 connected with “initialisation”
and “architecture” of Neural Networks?

σ2
min(J(θ)) > 0

σ2
min(J(θt)) > 0 ∀t ∈ {0,…, T}

Convergence to saddle points

Q-3. How do we know that AltGDA converges to
saddle points?

Convergence to saddle points

Q-3. How do we know that AltGDA converges to saddle points?

Q-3. For AltGDA, do where

Fact: AltGDA converges to saddle points for Min-Max objectives

satisfying two-sided PŁ-condition*

lim
t→∞

(θt, ϕt) = (θ⋆, ϕ⋆)

L(θ⋆, ϕ) ≤ L(θ⋆, ϕ⋆) ≤ L(θ, ϕ⋆) ∀θ, ϕ

*Global Convergence to and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems (NeurIPS’20)

Convergence to saddle points

Q-3. How do we know that AltGDA converges to saddle points?

Q-3. For AltGDA, do where

Fact: AltGDA converges to saddle points for Min-Max objectives

satisfying two-sided PŁ-condition*

lim
t→∞

(θt, ϕt) = (θ⋆, ϕ⋆)

L(θ⋆, ϕ) ≤ L(θ⋆, ϕ⋆) ≤ L(θ, ϕ⋆) ∀θ, ϕ

*Global Convergence to and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems (NeurIPS’20)

Hidden Strongly Convex(/Concave)

PŁ-condition
⟹

Chapter 4: Our Results

Informally, we show that…

For Hidden-Strongly-Convex-Strongly-Concave Games

Informally, we show that…

We see a “gap” between overparameterization needed for MIN and MIN-MAX:

• MIN [SKPEC21*]: overparameterization needed
• MIN-MAX [Ours]: overparameterization needed

Ω̃(n1.5)
Ω̃(n3)

*Subquadratic Overparameterization for Shallow Neural Networks (2021)

A closer look at the Hidden
Games we consider

The Two Hidden Min-Max Settings

The Two Hidden Min-Max Settings

Manoli,
What do we
optimize?

The Two Hidden Min-Max Settings

Manoli,
What do we
optimize?

What do you mean?
Fix the dataset and find
Minmax NN parameters

The Two Hidden Min-Max Settings

Why?

The Two Hidden Min-Max Settings

Because I can do the
inverse too.

Fix NN and find the
Min-max inputWhy?

The Two Hidden Min-Max Settings
Setting 1: Input-Optimization Games

• Network parameters and are fixed (e.g. random initializations)

• Optimizing over inputs — Adversarial example generation*

• Examples: Adversarial Attack over Data Transformations, Universal
Perturbation over Multiple Examples, Ensemble Attack over Multiple Models

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

θ ϕ

*Adversarial attack generation empowered by min-max optimization (NeurIPS’21)

The Two Hidden Min-Max Settings
Setting 1: Input-Optimization Games

• Network parameters and are fixed (e.g. random initializations)

• Optimizing over inputs — Adversarial example generation*

• Examples: Adversarial Attack over Data Transformations, Universal
Perturbation over Multiple Examples, Ensemble Attack over Multiple Models

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

θ ϕ

*Adversarial attack generation empowered by min-max optimization (NeurIPS’21)

The Two Hidden Min-Max Settings
Setting 1: Input-Optimization Games

• Network parameters and are fixed (e.g. random initializations)

• Optimizing over inputs — Adversarial example generation*

• Examples: Adversarial Attack over Data Transformations, Universal
Perturbation over Multiple Examples, Ensemble Attack over Multiple Models

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

θ ϕ

*Adversarial attack generation empowered by min-max optimization (NeurIPS’21)

The Two Hidden Min-Max Settings
Setting 2: Neural Games

• Network parameters and are NOT fixed

• Models modern-day deep learning applications

• Examples: Generative Adversarial Networks, Adversarial Robustness,
Robust Adversarial Reinforcement Learning, Distributionally Robust
Optimization, Domain Invariant Representation Learning

min
θ∈ℝm

max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]
θF θG

The Two Hidden Min-Max Settings
Setting 2: Neural Games

• Network parameters and are NOT fixed

• Models modern-day deep learning applications

• Examples: Generative Adversarial Networks, Adversarial Robustness,
Robust Adversarial Reinforcement Learning, Distributionally Robust
Optimization, Domain Invariant Representation Learning

min
θ∈ℝm

max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]
θF θG

Back to our results
Setting 1: Input-Optimization Games

• We consider bilinear objective

We show that w.h.p. AltGDA converges to saddle point in if the
Gaussian-randomly-initialized mappings and (1-hidden-layer neural networks)
satisfy

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θF), G(xBob; θG))

F(xAlice; θ)⊤AG(xBob; ϕ)

ϵ− O(poly(1/ϵ))
F G

σ2
F/G = Θ̃1/σmax(A) (poly(

1
widthF

))

Open Question from NeurIPS 2019

Back to our results
Setting 2: Neural Games

• We consider separable latent min-max objectives of the form

where () is hidden-strongly-convex (hidden-strongly-concave).

• Both and are 1-hidden-neural network with Gaussian random
initializations.

min
θ∈ℝm

max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

𝔼(x,x′￼)∼Pxx′￼[ℓF(F(x; θ), x) + F(x; θ)⊤AG(x′￼; ϕ) − ℓG(G(x′￼; ϕ), x′￼)]
ℓF ℓG

F G

Back to our results
Setting 2: Neural Games

We show that w.h.p. AltGDA converges to a saddle point if the Gaussian-
random initializations and hidden-layer width of the networks and satisfy

min
θ∈ℝm

max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))] (HSCSC*)

F G

σ1,F/G ⋅ σ2,F/G ≲
1

din,F/G ⋅ widthF/G

and widthF/G = Ω̃ (μ2
θ/ϕ

n3

din,F/G)
*HSCSC = Hidden-Strongly-Convex-Strongly-Concave

Proof Outline

1. Choose Gaussian random initializations such that the Jacobian for
networks and is “well-conditioned” w.h.p.

2. Define radius of a Euclidean ball such that the Jacobian
remains well-conditioned within it.

3. Compute path length bound of AltGDA iterates in terms of , a
special Lyapunov potential at time .

4. Find sufficient conditions on hidden layer width of networks to ensure
this path length is smaller than the ball radius

(θ0, ϕ0)
F G

R ℬ((θ0, ϕ0), R)

(θt, ϕt) P0
t = 0

F, G
R

Proof Outline (Remarks)

• Regarding (2.) and (4.):

• Similar analysis in case of is easier and relies on careful selection
of step-size instead.

• Staying within ball -hidden-strongly-convex PŁ-condition

• Why bother? -hidden-strongly-convex -PŁ-condition

MIN

⟹ μ ⟹

μ ⟹ μσ2
min(J(θ))

Proof Outline (Remarks)

• Regarding (3.)—(4.):

•Lyapunov Potential for min-max objective with saddle point ():

• Intuitively, we are looking for s.t. we are somewhat close to the saddle
point to begin with.

• Finding the sufficient width to ensure staying within crucially
relies on the geometry of the input data ()

Pt L(θ, ϕ) θ⋆, ϕ⋆

Pt := (max
ϕ

L(θt, ϕ) − L(θ⋆, ϕ⋆)) + λ (max
ϕ

L(θt, ϕ) − L(θt, ϕt))
(θ0, ϕ0)

ℬ((θ0, ϕ0), R)
σmax(X), σmin(X*t)

Proof Outline (Remarks)

• Regarding (3.)—(4.):

• Controlling so that it’s small boils down to requiring the following:

• Recall that the min-max objective is HSCSC (). Another
reason for why Jacobian singular values appear in analysis. (Chain rule!)

Pt := (max
ϕ

L(θt, ϕ) − L(θ⋆, ϕ⋆)) + λ (max
ϕ

L(θt, ϕ) − L(θt, ϕt))
P0

∥∇θL(θ0, ϕ0)∥ + ∥∇ϕL(θ0, ϕ0)∥ ≲ R2

L(θ, ϕ) = L(Fθ, Gϕ)

Proof Outline (Remarks)

• Regarding (3)—(4.):

• Ensuring potential is “small” boils down to the following:

P0

σmax(J(θ0)) ⋅ (C1σmax(X) + C2) ≲ σ2
min(J(θ0))

⟺ width ≳
nμ2σ6

max(X)
σ4

min(X*t)
(n ≃ dt

in; t ≥ 2)

⟺ width = Ω̃ (μ2 n3

din) (σmax(X) ≃
n

din
; σmin(X*t) ≃ 1)

Future Work

• The width (and hence the overparameterization) condition on the neural
networks is a sufficient condition. Is it also necessary?

• Analysis assumes differentiable activation functions (excluded ReLU, for
example).

• Connect results with those for extensive-form games.

• Extend to Hidden MVIs for polyhedral settings

F, G

Thank you!

