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Question at the heart of this talk
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How can two neural networks be designed and trained
to compute a solution to a zero-sum game?
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» Chapter 1: Preliminaries
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Chapter 1: Preliminaries
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Success of Deep Learning
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How Theory Tries to Understand Success of Deep Learning

Gradient Descent Finds Global Minima of
Deep Neural Networks

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, Xiyu Zhai Proceedings of the 36th International
Conference on Machine Learning, PMLR 97:1675-1685, 2019.

A Convergence Theory for Deep Learning
via Over-Parameterization

Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song Proceedings of the 36th International Conference on
Machine Learning, PMLR 97:242-252, 2019.

The Loss Surface of Deep and Wide Neural
Networks

Quynh Nguyen, Matthias Hein Proceedings of the 34th International Conference on Machine
Learning, PMLR 70:2603-2612, 2017.

How SGD Selects the Global Minima in
Over-parameterized Learning: A Dynamical Stability
Perspective

Gradient descent optimizes over-parameterized deep RelLU
networks

Difan Zou, Yuan Cao, Dongruo Zhou, Quanquan Gu

Image Source: https://www.cs.umd.edu/~tomg/project/landscapes/




Naturally we may askK...

How big a neural network should be
so that vanilla methods like (S)GD can
converge to global optima?




0* € arg min
oeR™

Formally, we want to know...

= (x,y)~P,, [L(f (x; 0), )’)]

. Loss function L : R%u X R — | >0 (€.9. MSE, CCE, etc.)

 underlying data distribution ny

. Neural network f( - ;6) : R% — [

d

out

(e.g. MLPs, ResNets, CNNs, etc.)



Table 3: Over-parameterization conditions for the convergence analysis of neural network under
gradient descent training with squared loss. L 1s the depth of the network.

Model Depth Initialization Activation Width
Allen-Zhu et al. [2019a] FCNN/CNN Deep NTK ReLU Q(N**L'?)
Du et al. [2019a] FCNN/CNN Deep NTK Smooth  Q(N*29(1))
Oymak and Soltanolkotabi [2020] FCNN  Shallow Standard Gaussian ReLLU Q(N?)
Zou and Gu/[2019] FCNN Deep He ReLLU Q(N®L'?)
Du et al.| [20190] FCNN  Shallow NTK RelLU Q(N 6)
Nguyen|[2021] FCNN Deep LeCun ReLLU Q(N?)
Chen et al. [2021] FCNN  Deep NTK ReLU Q(L*%)
Song et al.|[2021] FCNN  Shallow He/Lecun Smooth Q(N 3/ %)
Bombari et al.| [2022] FCNN Deep He/LeCun Smooth Q(\/N )
Allen-Zhu et al. [2019b] RNN - NTK ReLLU Q(N°),c>1
Hron et al. [2020] Transformer Deep NTK RelLU -
Yang|[2020] Transformer Deep NTK Softmax+RelLU -
Our Transformer Shallow Table|1 Softmax+ReLU Q(N)

*On the Convergence of Encoder-only Shallow Transformers (NeurlPS’23)



Ch. 2: From MIN to MIN-MAX




Ise of Multi-Agent Learning Applications
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MIN MIN-MAX Optimization

 We are now modelling multiple agents learning and making decisions in a
non-stationary environment that can react to these decisions. For example,

* Agents having conflicting interests/objectives

» Adversaries that can change/corrupt the data/distribution (label noise,
distribution shifts)

* Enforce constraints on learnt models such as those relating to causal
inference, privacy, and fairness (and more).

 MIN can now be viewed as a Single-Agent Learning problem.



MIN MIN-MAX Optimization

 We are now modelling multiple agents learning and making decisions in a
non-stationary environment that can react to these decisions. For example,

. ACaniaaiatan .

M However, making Gradient Descent analogs “work” for
s MIN-MAX problems is hard due to “cycling” issues
- (more on this soon).

INTETE c, PIVdAdLy, dlifld Tc = A 1C O1e).

 MIN can now be viewed as a Single-Agent Learning problem.



Natural Question: How big a neural network
should be so that vanilla methods like SGB AltGDA
can converge to glebal-eptima a saddle point?




More formally, we want to know...

(0%, ™) € arg min arg max = (xx)~P [L(F (x;0), G(x'; gb))]
oeR™ PpeR” e

G)
ut —> R>O

. (F) (
e Loss function L : Rdoif X IRdO

« data distribution P,

JF) 4O 40

e Neural networks F( - ;0) : R%" — Rdggf), G(-;¢): R — R%u (e.g. MLPs, ResNets,
CNNs, etc.)




Can we just expect AltGDA to converge

to saddle points (just like in the case of
(S)GD for global optima)?




No... Hard to avoid “cycles”

 [BGP20] Finite Regret and Cycles with Fixed Step-Size via Alternating Gradient Descent-Ascent
* Bilinear Matrix Games known to exhibit cycling behaviour (AltGDA with fixed step-sizes)

 Shapley (1964)* proved that in the game pictured here (a nonzero-sum version of Rock, Paper,
Scissors), if the players start by choosing (a, B), the play will cycle indefinitely.

A B C
0,012,111, 2

1,210,012, 1

(I prefers 2) { (I prefers 3)
i

I's strategy space II's strategy space c 2’ 1 1’ 2 O’ 0

*Some topics in Two-Person Games (1964)
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SUMMARY

This Memorandum consists of several loosely—related
essays on the theory of finite, two—person games. The
topics covered are, in brief, (1) the block decomposition
of symmetric games, (2) saddlepoints in matrices having
submatrices with saddlepoints, (3) generalized saddlepoints
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No... Hard to avoid “cycles”

e Cycling in Adversarial learning (2018)

 In a long run, every FTRL exhibits Poincaré Recurrence wandering around the
equilibrium In a zero sum game.

e Training GANs with Optimism (2018)

* Optimistic Mirror Descent exhibits the last-iterate convergence property in a zero
sum game.

 The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization (2018)

 The limits points of OMD are a superset of the local min-max solutions in a zero
sum game.



Moreover, let’s recall that...

Grenerakive Adversarial Nebworlkes
[Goodfellow et al. 16]

[z \ J
w 4

9

&
arg min max V' (H(D),H(G)) .
6 (G) Q(D)

The minimax game is mostly of interest because it is easily amenable to the-
oretical analysis. Goodfellow et al. (2014b) used this variant of the GAN game
to show that learning in this game resembles minimizing the Jensen-Shannon
divergence between the data and the model distribution, and that the game
converges to its equilibrium if both players’ policies can be updated directly in
function space. In practice, the players are represented with deep neural nets

and updates are made in parameter space, so these results, which depend on
convexity, do not apply.



S0 let’s focus on a class of min-max
games that capture as many of the current
deep learning applications as possible!




S0 let’s focus on a class of min-max games that
capture as many of the current deep learning
applications as possible and yet avoid cycles!



ames that
learning
1 cycles!

So let’s fou
capture ¢
applicatic



Chapter 3: Hidden(-Convex-
Concave) Games



Hidden(-Convex/Concave) Games

(0%, ¢p™) € arg min arg max [E (XX )P [L(F (xG(x’ ]

dcR™ PpeR”

Loss L. is nhon-convex

(non-concave) in 0 ()




Hidden(-Convex/Concave) Games

(0*,¢*) € arg min argmax E . P [L
IR

OdcR™ PpeR”
/ Loss L. is hon-convex

(non-concave) in 0 ()

Loss L is convex (concave) in

F(-;0)(G(-; )




Convergence Results for Hidden Games
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Global Convergence and Variance-Redu
Nonconcave Minimax Problems

Authors: Junchi Yang, Negar Kiyavash, Niao He

Solving Zero-Sum Convex Markov Gagfies
Authors: Fivos Kalogiannis, Emmanouil-Vasg#ros VI Is-Gkaragkounis, lan Gemp, Georgios Piliouras




Convergence Results for Hidden Games

in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum

Poincaré Recurrence, Cycles and Spykiou@Equii
Games : :
Authors: Lampros Flokas, Emmanouil-Vasilei is-G nis, Georgios Piliouras continuous dynamICS

Solving Min-Max Optimization with Hg&iden $#ructure via Gradient Descent Ascent
Viatog@-Gkaragkounis, Georgios Piliouras GDA
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Solving Zero-Sum Convex Markov Gagfies General, constrained case
0s VI Is-Gkaragkounis, lan Gemp, Georgios Piliouras

Authors: Fivos Kalogiannis, Emmanouil-Va

AltGDA




Also check out (12:00 — 12:30):

“Solving Hidden Monotone Variational Inequalities with
Surrogate Losses”
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| et’s take a closer look at hidden
(convex) optimization



Hidden Convex Optimization

min F(0) := H(c(0)) (%)
0c®

« Consider the following objective F(8) in ( x ) above:
F(6) = ||A0 - b||*
H(-) = |-|I°
c(@) . =A0—-b



Hidden Convex Optimization

min F(0) := H(c(0)) (%)
0O

» Consider the following objective F(8) in ( % ) above:
H( =12 H( -) := p-strongly-convex
ef@—-=A8—b c(0) := invertible operator

* This is now a hidden-convex optimization problem




Hidden Convex Optimization (Formally)

min F(60) := H(c(0)) (%)
0O

This problem is (i ., 1z;)-hidden convex if the following hold true:

» Domain % = ¢(®) is convex. Function H : % — R (uy > 0) satisfies the following*

. (1 = DAuy 5
(1=ADu+v) < -VDH@u)+ AHQW) — > |l — v||© Vu,v VA € [0,1]

« Themap ¢ : ® — % is invertible. There exists u. > 0 s.t.

1c(0) — ()| 2 p||0— 0| VO,0°€ O

*and convex reformulation of ( % ) admits a solution u™ € %)



Hidden Convex Optimization (Formally)

min F(0) := H(c(0)) (%)
0O

This problem is (i ., 1z;)-hidden convex if the following hold true:

» Domain % = ¢(®) is convex. Function H : % — R (uy; > 0) satisfies the following*

lu — v||* Yu,v VA e [0,1]

H((1 — A)u Strong convexity of the “latent” )
strongly convex landscape /

e« Themapc : ®

Lipschitzness of the inversion ~
condition-number of C_l( + )

*and convex reformulation of ( % ) admits a solution u* € U)



Hidden Convex Optimization

I;li(l; F(0) .= H(c(0)) ((u., uz) — hidden convex)

E.1. Globally optimal solution

The following proposition suggests that every stationary point of a hidden convex function 1s a
global minima.

Proposition 7 Let F(-) be hidden convex and * € X be its stationary point. If the map c(-) is
differentiable at T , then T is a global solution for (3), i.e., F'(x) < F(x) for any x € X.

Proposition 8 Let F'(-) be differentiable, hidden strongly convex (g > 0), and the map c(-) be
differentiable on X, then the optimization problem satisfies the global K. condition.

min ||VFE(z) + hg||* > 2upp? (F(z) — F*)  forallz € X. (13)
hxéadx(w)

Stochastic Optimization under Hidden Convexity (2023)



Hidden Convex Optimization

min F(0) := H(c(6 1 . U) — hidden convex)
VIS,

E.1. Globally optim NGRS NEUST@ s [=Xe|e=Tell=Tal
The following propos Closer to the minimum en convex function 1s a

global minima.

Proposition 7 Let F'(-) be hidden convfx and T € XNe its stationary point. If the map c(-) is
differentiable at X , then X is a global sglution for (3), i.e\F(Z) < F(x) for any x € X.

Proposition 8 Letr F'(-) be differenfiable, hidden strongly cQnvex (ug > 0), and the map c(-) be
differentiable on X, then the optiggization problem satisfies th&global K. condition.

i VF ho > 20 il F(z) — F* llz e X. 13
, ain NIVF(@) + hal'| papi(F(z) — F*))  forallz (13)

Stochastic Optimization under Hidden Convexity (2023)



Hidden Convex Optimization

min F(0) := H(c(0)) ((u., Hz) — hidden convex)

0e®
E.1. Globally optimal sc Greater latent convexity,
The following propositio smoother inversion, idden convex function is a
global minima. nearer the minimum.

Proposition 7 Let F(-) be hidden convex ana
differentiable at x , then X is a global solution

T € X be its stationary point. If the map c(-) is
(3), i.e., F(x) < F(x) forany x € X.

Proposition 8 Ler F'(-) be differentiable, hi trongly convex (ug > 0), and the map c(-) be
differentiable on X, then the optimization problem satisfies the global K. condition.

min ||VF(z) + hg|* > (F(a:) — F™) forallx € X. (13)
hz €00 x ()

Stochastic Optimization under Hidden Convexity (2023)



Hidden Convex Optimization

Ignig F(0) .= H(c(0)) ((u., uz) — hidden convex

Hidden Strongly

- ‘) be differentiable, hidden strongly convex (g > 0), and the map c(-) be
differentiable on X, then the optimization problem satisfies the global K. condition.

min ||VF(z) + hg||* > 2unp? (F(z) — F*)  forallz € X. (13)
hgcea(SAg(CE)

Stochastic Optimization under Hidden Convexity (2023)



Quick Primer on Pk-condition

) = ) S VA3 (Pe-conition
H

flx) = x? + 3sin? x

—6 —4 -2 0 2 4 0
X https://shorturl.at/gfQd5



Quick Primer on Pk-condition

) = ) S VA3 (Pe-conition
H

https://arxiv.org/pdf/2107.10123



Quick Primer on Pk-condition

) = ) S VA3 (Pe-conition
H

» “Generalisation” of strong convexity condition whilst still guaranteeing linear
convergence rates for Gradient Descent method

- u-strongly-convex => u-Pk condition

» 11-Pt. condition x u-strongly-convex (or convex!)



Back to Hidden Convex Optimization

I;li({)l F(0) .= H(c(0)) ((u., uz) — hidden convex)

f0) = ) S VA3 (Pe-condition
H

What we have is:




Hidden Convex Optimization

min F(0) ;= H
. — C 9
00 ( ( )) ((/ftc,ﬂ)—hl AN Lo
Assumption 2. The singular values of the Jacobian J (6) of the representation c(9) are
bounded as
2 < eig(3(0)IO)) = 0 max (16)

2% — Omin —

c (0,00) and for all 0 € ©.
) in games with a

for sOmMe Omin, Imax
d, we begin by studyng

the behavior of (PHGD

) Wwith all this in han
hidden monotone structure.



ption 2. The singul

Inturtion e

ponnded 2 ) ohin < cig(3(O)IO)) <

Multi-Agent RL & / Nets as Strateg};-Producers

P
?
If 6... = 0 then NN-map loses [F /58
part(s) of the Strategy Space!!!

» Key Observation:

Many interesting games (i.e., stochastic & external form) can be expressed as
Classical games with very large action space!

» Modern Approach:

Substitute every agent with a neural network map!!!



Checking Hidden (Strong) Convexity

Q-1. Is Assumption 2 correct?



Checking Hidden (Strong) Convexity

Q-1-s-Assumption-2-correct?
Q-1. Is it true that (féin(J (6)) > 0?



Checking Hidden (Strong) Convexity

Q-2. Assumption 2 holds for all parameter iterates”?



Checking Hidden (Strong) Convexity

Q-2-Assumption2-holds for-all parameter-iterates?
Q-2.1s 6. (J(0)) >0 Ve {0,...,T}

min




Checking Hidden (Strong) Convexity

Q-1. Is it true that 6. (J(6)) > 0?

min

Q-2. Is 02 J@)) >0 Ve {0,...,T}

min

How are Q-1 and Q-2 connected with “initialisation”
and “architecture” of Neural Networks?



Convergence to saddle points

Q-3. How do we know that AItGDA converges to
saddle points?



Convergence to saddle points

Q-3. How do we know that AltGDA converges to saddle points?

Q-3. For AltGDA, do lim (8, ¢) = (6™, ¢™) where

[— 0

LO*, ) < L(O%,¢™) < L(O,p™) VO, ¢

*Global Convergence to and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems (NeurlPS’20



Convergence to saddle points

_ vIin-Mlax objectives
INg two-sided Pt-condition®

*Global Convergence to and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems (NeurlPS’20



Chapter 4: Our Results




Informally, we show that...

Informal Theorem (Theorem 3.7). There exists a decentralized, gradient-based method (eq. (Alt-
GDA)) that computes, with high probability under suitable Gaussian random initialization, an
e-approximate Nash equilibrium for any € > 0 in broad class of hidden convex-concave zero-sum
games, where each player’s strategy is parameterized by a sufficiently wide two-layer neural network.

o The number of iterations required scales as

1 1 1 L3 1
O | din U Y L _ y
(poy (widthl’widthg’ n’ " t) . w3 108 (e))

where width, , widthy are the hidden layer widths, n is the number of training samples,

is the input dimension, L is the smoothness constant, and L is the strong convexity modulus
of the latent objective.

* This guarantee holds provided the network width, o = Q ([LZ n’ ) .

dinput

For Hidden-Strongly-Convex-Strongly-Concave Games



Informally, we show that...

Informal Theorem (Theorem 3.7). There exists a decentralized, gradient-based method (eq. (Alt-
- an
m

rk.

€

We see a “gap” between overparameterization needed for MIN and MIN-MAX:

e MIN [SKPEC21*]: Q(nl's) overparameterization needed
e MIN-MAX [Ours]: Q(n3) overparameterization needed

put
Uus

o This guarantee holas provided the network width; o = 7}

dinput

*Subquadratic Overparameterization for Shallow Neural Networks (2021)



A closer look at the Hidden
Games we consider



The Two Hidden Min-Max Settings




The Two Hidden Min-Max Settings

Manoli,
What do we
optimize?




The Two Hidden Min-Max Settings

Manoli,

What do you mean? What do v’\;e
Fix the dataset and find optimize
Minmax NN parameters




The Two Hidden Min-Max Settings




The Two Hidden Min-Max Settings

Because | can do the
Inverse too.
Fix NN and find the

Min-max input




The Two Hidden Min-Max Settings

Setting 1: Input-Optimization Games
min max L(F(xy;..;0), G(xg, .; @))
xAliceeg)ZF xBobegG
- Network parameters @ and @ are fixed (e.g. random initializations)

» Optimizing over inputs — Adversarial example generation”

- Examples: Adversarial Attack over Data Transformations, Universal
Perturbation over Multiple Examples, Ensemble Attack over Multiple Models

*Adversarial attack generation empowered by min-max optimization (NeurlPS’21)



The Two Hidden Min-Max Settings

Setting 1: Input-Optimization Games

min max L(F(xy;..;0), G(xg, .; @))

xAliceE@F xBobEgZG

Example B.6 (Ensemble Attack over Multiple Models). Given K machine learning models { M, } 2 .,
the goal is to find a universal perturbation o that simultaneously fools all models. The corresponding
Input-optimization game reads:

Y
M;) = Tlw—1/K]3

where w encodes the relative difficulty of attacking each model, and v 1s a regularization parameter.

*Adversarial attack generation empowered by min-max optimization (NeurlPS’21)



The Two Hidden Min-Max Settings

Setting 1: Input-Optimization Games

min max L(F(xy;..;0), G(xg, .; @))

xAliceEQZF xBobEgZG

Example B.8 (Adversarial Attack over Data Transformations). Consider robustness against transfor-
mations (e.g., rotations, translations) applied to the inputs. Given categories of transformations {p; },
the optimization reads:
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where ¢t denotes a random transformation sampled from p;. When w = 1/K, this recovers the
expectation-over-transformation (EOT) setup.

*Adversarial attack generation empowered by min-max optimization (NeurlPS’21)



The Two Hidden Min-Max Settings

Setting 2: Neural Games

Example B.1 (Generative Adversarial Networks (GANSs)). A Generative Adversarial Network
(GAN) formulates a two-player minimax game where the generator Gy seeks to produce samples that
resemble a reference distribution pyata, While the discriminator D, attempts to distinguish generated

min max
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samples from real data. The corresponding min-max problem reads:

minmax Y(0,¢) :=

0

¢
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The Two Hidden Min-Max Settings

Setting 2: Neural Games
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Example B.2 (Domain-Invariant Representation Learning (DIRL)). Domain adaptation aims to train
models that generalize across different domains, despite distribution shifts between training (source)
and deployment (target) environments. A popular approach [42] involves learning representations
that are: (1) predictive of labels in the source domain, and (11) 1invariant to the domain classifier
distinguishing source versus target samples. This leads to the following min-max problem:
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Back to our results
Setting 1: Input-Optimization Gage

min max
xAliceegF xBobegG

» We consider bilinear objective

u I

I (xAlice; Q)TAG(XBOI?; {Z

We show that w.h.p. AItGDA converges to e—saddle point in O(poly(1/¢)) if the

Gaussian-randomly-initialized mappings F and G (1-hidden-layer neural networks)
satisfy

, 5
Orn = O poly(— )
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Back to our results

Setting 2: Neural Games

;HII’}Q ma)i _(X,X/)NPXX’ [L(F(X, 9)9 G(X,; ¢))]
eER™ peR

» We consider separable latent min-max objectives of the form

= yep |CFF(0), X) + F(x; ) AG(x'; ) = £6(G(x'5 ), X))

where £ (€ ;) is hidden-strongly-convex (hidden-strongly-concave).

- Both F' and G are 1-hidden-neural network with Gaussian random
Initializations.



Back to our results

Setting 2: Neural Games

min max E. . _p  |L(F(x;60),G(x;¢))|  (HSCSC)
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We show that w.h.p. AItGDA converges to a saddle point if the Gaussian-
random initializations and hidden-layer width of the networks F and G satisfy

1 ~ n>
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"HSCSC = Hidden-Strongly-Convex-Strongly-Concave



Proof Outline

1. Choose Gaussian random initializations (6, ¢y) such that the Jacobian for
networks F' and G is “well-conditioned” w.h.p.

2. Define radius R of a Euclidean ball %((6,, ¢y), R) such that the Jacobian
remains well-conditioned within it.

3. Compute path length bound of AItGDA iterates (0,, ¢,) in terms of P, a
special Lyapunov potential at time t = 0.

4. Find sufficient conditions on hidden layer width of networks F', G to ensure
this path length is smaller than the ball radius R



Proof Outline (Remarks)

» Regarding (2.) and (4.):

» Similar analysis in case of MIN is easier and relies on careful selection
of step-size instead.

 Staying within ball =} u-hidden-strongly-convex =— Pt-condition

. Why bother? u-hidden-strongly-convex => uc?. (J(6))-Pt-condition

min



Proof Outline (Remarks)

» Regarding (3.)—(4.):

-Lyapunov Potential P, for min-max objective L(0, ¢) with saddle point (0, ¢™):

P = (mq?X L(0,, ¢) — L(O7, 45*)) + 4 (mq?X L(0;, ) — L(O, ¢t)>

- Intuitively, we are looking for (6,, ¢) s.t. we are somewhat close to the saddle
point to begin with.

- Finding the sufficient width to ensure staying within S ((6,, ¢), R) crucially
relies on the geometry of the input data (... .(X), 6. (X )

max( IIllIl



Proof Outline (Remarks)

» Regarding (3.)—(4.):

P = (m;lX L(0,, ¢) — L(0™, (ﬁ*)) + 4 (m;lx L(0;, ) — L(O, 4%))

- Controlling P, so that it’s small boils down to requiring the following:

IV 4L, )l + 1V 4 L6 p)I| S R?

- Recall that the min-max objective is HSCSC (L(0, ¢p) = L(F, G)). Another
reason for why Jacobian singular values appear in analysis. (Chain rule!)



Proof Outline (Remarks)

» Regarding (3)—(4.):

- Ensuring potential P is “small” boils down to the following:

Omax(J () - (C160x(X) + C3) S 62:,(J(6)))
X)
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Future Work

 The width (and hence the overparameterization) condition on the neural
networks F, G is a sufficient condition. Is it also necessary?

* Analysis assumes differentiable activation functions (excluded RelU, for
example).

* Connect results with those for extensive-form games.

 Extend to Hidden MVIs for polyhedral settings



Thank you!



