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Question at the heart of this talk

How can two neural networks be designed and trained  
to compute a solution to a zero-sum game?



Outline

• Chapter 1: Preliminaries

• Chapter 2: From  to 

• Chapter 3: Hidden(-Convex-Concave) Games

• Chapter 4: Our Results

MIN MIN-MAX



Chapter 1: Preliminaries



Success of Deep Learning

https://shorturl.at/GuvKT https://shorturl.at/38aUehttps://shorturl.at/4VGKL

https://shorturl.at/mlTfn



Success of Deep Learning

https://shorturl.at/6Oxs4
https://shorturl.at/ya6zQ

https://shorturl.at/eXGBPhttps://shorturl.at/2COlv



How Theory Tries to Understand Success of Deep Learning

Image Source: https://www.cs.umd.edu/~tomg/project/landscapes/



How big a neural network should be  
so that vanilla methods like (S)GD can 

converge to global optima?

Naturally we may ask…



Formally, we want to know…



• Loss function  (e.g. MSE, CCE, etc.)


• underlying data distribution 


• Neural network   (e.g. MLPs, ResNets, CNNs, etc.)


How many parameters should the network    have so that vanilla methods like 
SGD can converge to a global optima ?

θ⋆ ∈ arg min
θ∈ℝm

𝔼(x,y)∼Pxy [L( f(x; θ), y)]
L : ℝdout × ℝ → ℝ≥0

Pxy

f( ⋅ ; θ) : ℝdin → ℝdout

f
θ⋆



*On the Convergence of Encoder-only Shallow Transformers (NeurIPS’23)



Ch. 2: From  to MIN MIN-MAX



Rise of Multi-Agent Learning Applications

https://shorturl.at/e7Xbw

https://shorturl.at/I0g1phttps://shorturl.at/Opeki https://shorturl.at/DH09f

https://shorturl.at/krf6V



MIN MIN-MAX Optimization

• We are now modelling multiple agents learning and making decisions in a 
non-stationary environment that can react to these decisions. For example,


• Agents having conflicting interests/objectives


• Adversaries that can change/corrupt the data/distribution (label noise, 
distribution shifts)


• Enforce constraints on learnt models such as those relating to causal 
inference, privacy, and fairness (and more).


• MIN can now be viewed as a Single-Agent Learning problem.



MIN MIN-MAX Optimization

• We are now modelling multiple agents learning and making decisions in a 
non-stationary environment that can react to these decisions. For example,


• Agents having conflicting interests/objectives


• Adversaries that can change/corrupt the data/distribution (label noise, 
distribution shifts)


• Enforce constraints on learnt models such as those relating to causal 
inference, privacy, and fairness (and more).


• MIN can now be viewed as a Single-Agent Learning problem.

However, making Gradient Descent analogs “work” for 
MIN-MAX problems is hard due to “cycling” issues 

(more on this soon).



Natural Question: How big a neural network 
should be so that vanilla methods like SGD AltGDA 

can converge to global optima a saddle point?



More formally, we want to know…



• Loss function 


• data distribution 


• Neural networks ,  (e.g. MLPs, ResNets, 
CNNs, etc.)


How many parameters should the networks    have so that vanilla methods like 
AltGDA can converge to a saddle point ?

(θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]
L : ℝd(F)

out × ℝd(G)
out → ℝ≥0

Pxx′￼

F( ⋅ ; θ) : ℝd(F)
in → ℝd(F)

out G( ⋅ ; ϕ) : ℝd(G)
in → ℝd(G)

out

F, G
(θ⋆, ϕ⋆)



Can we just expect AltGDA to converge 
to saddle points (just like in the case of 

(S)GD for global optima)?



No… Hard to avoid “cycles”

• [BGP20] Finite Regret and Cycles with Fixed Step-Size via Alternating Gradient Descent-Ascent


• Bilinear Matrix Games known to exhibit cycling behaviour (AltGDA with fixed step-sizes)


• Shapley (1964)* proved that in the game pictured here (a nonzero-sum version of Rock, Paper, 
Scissors), if the players start by choosing (a, B), the play will cycle indefinitely.


                  

*Some topics in Two-Person Games (1964)





No… Hard to avoid “cycles”

• Cycling in Adversarial learning (2018)


• In a long run, every FTRL exhibits Poincaré Recurrence wandering around the 
equilibrium in a zero sum game.


• Training GANs with Optimism (2018)


• Optimistic Mirror Descent exhibits the last-iterate convergence property in a zero 
sum game.


• The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization (2018)


• The limits points of OMD are a superset of the local min-max solutions in a zero 
sum game.



Moreover, let’s recall that…

Generative Adversarial Networks 
 [Goodfellow et al. 16]



So let’s focus on a class of min-max 
games that capture as many of the current 

deep learning applications as possible!



So let’s focus on a class of min-max games that 
capture as many of the current deep learning 
applications as possible and yet avoid cycles!



So let’s focus on a class of min-max games that 
capture as many of the current deep learning 
applications as possible and yet avoid cycles!Hidden Games



Chapter 3: Hidden(-Convex-
Concave) Games



Hidden(-Convex/Concave) Games

(θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

Loss  is non-convex 
(non-concave) in  ( )

L
θ ϕ



Hidden(-Convex/Concave) Games

(θ⋆, ϕ⋆) ∈ arg min
θ∈ℝm

arg max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

Loss  is non-convex 
(non-concave) in  ( )

L
θ ϕ

Loss  is convex (concave) in 
 ( )

L
F( ⋅ ; θ) G( ⋅ ; ϕ)



Convergence Results for Hidden Games



Convergence Results for Hidden Games

continuous dynamics

GDA

PHGD

AltGDA

General, constrained case



Also check out (12:00 — 12:30): 

“Solving Hidden Monotone Variational Inequalities with 
Surrogate Losses”



Convergence Results for Hidden Games

continuous dynamics

GDA

PHGD

AltGDA

General, constrained case



Let’s take a closer look at hidden 
(convex) optimization



Hidden Convex Optimization




• Consider the following objective  in  above:








min
θ∈Θ

F(θ) := H(c(θ)) ( ⋆ )

F(θ) ( ⋆ )

F(θ) = ∥Aθ − b∥2

H( ⋅ ) := ∥⋅∥2

c(θ) := Aθ − b



Hidden Convex Optimization




• Consider the following objective  in  above:


 -strongly-convex


 invertible operator


• This is now a hidden-convex optimization problem


min
θ∈Θ

F(θ) := H(c(θ)) ( ⋆ )

F(θ) ( ⋆ )

H( ⋅ ) := ∥⋅∥2 H( ⋅ ) := μ

c(θ) := Aθ − b c(θ) :=



Hidden Convex Optimization (Formally)




This problem is -hidden convex if the following hold true:


• Domain  is convex. Function  ( ) satisfies the following*





• The map  is invertible. There exists  s.t.





min
θ∈Θ

F(θ) := H(c(θ)) ( ⋆ )

(μc, μH)

𝒰 = c(Θ) H : 𝒰 → ℝ μH ≥ 0

H((1 − λ)u + λv) ≤ (1 − λ)H(u) + λH(v) −
(1 − λ)λμH

2
∥u − v∥2 ∀u, v ∀λ ∈ [0,1]

c : Θ → 𝒰 μc > 0

∥c(θ) − c(θ′￼)∥ ≥ μc∥θ − θ′￼∥ ∀θ, θ′￼ ∈ Θ

*and convex reformulation of  admits a solution )( ⋆ ) u⋆ ∈ 𝒰
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This problem is -hidden convex if the following hold true:


• Domain  is convex. Function  ( ) satisfies the following*





• The map  is invertible. There exists  s.t.





min
θ∈Θ

F(θ) := H(c(θ)) ( ⋆ )

(μc, μH)

𝒰 = c(Θ) H : 𝒰 → ℝ μH ≥ 0

H((1 − λ)u + λv) ≤ (1 − λ)H(u) + λH(v) −
(1 − λ)λμH

2
∥u − v∥2 ∀u, v ∀λ ∈ [0,1]

c : Θ → 𝒰 μc > 0

∥c(θ) − c(θ′￼)∥ ≥ μc∥θ − θ′￼∥ ∀θ, θ′￼ ∈ Θ

*and convex reformulation of  admits a solution )( ⋆ ) u⋆ ∈ 𝒰

Lipschitzness of the inversion  
condition-number of 

≈
c−1( ⋅ )

Strong convexity of the “latent” 
strongly convex landscape



Hidden Convex Optimization

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

Stochastic Optimization under Hidden Convexity (2023)



Hidden Convex Optimization

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

Stochastic Optimization under Hidden Convexity (2023)

The smaller the gradient 
Closer to the minimum



Hidden Convex Optimization

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

Stochastic Optimization under Hidden Convexity (2023)

Greater latent convexity, 
smoother inversion,  
nearer the minimum.



Hidden Convex Optimization

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

Stochastic Optimization under Hidden Convexity (2023)

Hidden Strongly Convex  PŁ-condition⟹



Quick Primer on PŁ-condition

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

https://shorturl.at/gfQd5



Quick Primer on PŁ-condition

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

https://arxiv.org/pdf/2107.10123



Quick Primer on PŁ-condition




• “Generalisation” of strong convexity condition whilst still guaranteeing linear 
convergence rates for Gradient Descent method


• -strongly-convex -PŁ condition


• -PŁ condition -strongly-convex (or convex!)

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

μ ⟹ μ

μ ⟹ μ



Back to Hidden Convex Optimization







What we have is:


• -hidden-strongly-convex -PŁ condition

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

(μc, μH) ⟹ μ2
c μH



Hidden Convex Optimization







What we have is:


• -hidden convex -PŁ condition

min
θ∈Θ

F(θ) := H(c(θ)) ((μc, μH) − hidden convex)

f(x) − f(x⋆) ≤
1

2μ
∥∇f(x)∥2

2 (PŁ-condition)

(μc, μH) ⟹ μ2
c μH

μc ≡

c(θ)



Intuition
μc ≡

c(θ)

If   then NN-map loses 
part(s) of the Strategy Space!!!

σmin = 0



Checking Hidden (Strong) Convexity

Q-1. Is Assumption 2 correct?



Checking Hidden (Strong) Convexity

Q-1. Is Assumption 2 correct?


Q-1. Is it true that ?σ2
min(J(θ)) > 0



Checking Hidden (Strong) Convexity

Q-2. Assumption 2 holds for all parameter iterates? 



Checking Hidden (Strong) Convexity

Q-2. Assumption 2 holds for all parameter iterates?


Q-2. Is σ2
min(J(θt)) > 0 ∀t ∈ {0,…, T}



Checking Hidden (Strong) Convexity

Q-1. Is it true that ?


Q-2. Is 


How are Q-1 and Q-2 connected with “initialisation” 
and “architecture” of Neural Networks?

σ2
min(J(θ)) > 0

σ2
min(J(θt)) > 0 ∀t ∈ {0,…, T}



Convergence to saddle points

Q-3. How do we know that AltGDA converges to 
saddle points?




Convergence to saddle points

Q-3. How do we know that AltGDA converges to saddle points?


Q-3. For AltGDA, do  where 




Fact: AltGDA converges to saddle points for Min-Max objectives 

satisfying two-sided PŁ-condition*


lim
t→∞

(θt, ϕt) = (θ⋆, ϕ⋆)

L(θ⋆, ϕ) ≤ L(θ⋆, ϕ⋆) ≤ L(θ, ϕ⋆) ∀θ, ϕ

*Global Convergence to and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems (NeurIPS’20) 



Convergence to saddle points

Q-3. How do we know that AltGDA converges to saddle points?


Q-3. For AltGDA, do  where 




Fact: AltGDA converges to saddle points for Min-Max objectives 

satisfying two-sided PŁ-condition*


lim
t→∞

(θt, ϕt) = (θ⋆, ϕ⋆)

L(θ⋆, ϕ) ≤ L(θ⋆, ϕ⋆) ≤ L(θ, ϕ⋆) ∀θ, ϕ

*Global Convergence to and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems (NeurIPS’20) 

Hidden Strongly Convex(/Concave)  

PŁ-condition
⟹



Chapter 4: Our Results



Informally, we show that…




For Hidden-Strongly-Convex-Strongly-Concave Games



Informally, we show that…

We see a “gap” between overparameterization needed for MIN and MIN-MAX: 

• MIN [SKPEC21*]:  overparameterization needed 
• MIN-MAX [Ours]:  overparameterization needed

Ω̃(n1.5)
Ω̃(n3)

*Subquadratic Overparameterization for Shallow Neural Networks (2021)



A closer look at the Hidden 
Games we consider



The Two Hidden Min-Max Settings



The Two Hidden Min-Max Settings

Manoli,  
What do we 
optimize?



The Two Hidden Min-Max Settings

Manoli,  
What do we 
optimize?

What do you mean? 
Fix the dataset and find 
Minmax NN parameters



The Two Hidden Min-Max Settings

Why?



The Two Hidden Min-Max Settings

Because I can do the 
inverse too. 

Fix NN and find the  
Min-max inputWhy?



The Two Hidden Min-Max Settings
Setting 1: Input-Optimization Games




• Network parameters  and  are fixed (e.g. random initializations)


• Optimizing over inputs — Adversarial example generation*


• Examples: Adversarial Attack over Data Transformations, Universal 
Perturbation over Multiple Examples, Ensemble Attack over Multiple Models

min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

θ ϕ

*Adversarial attack generation empowered by min-max optimization (NeurIPS’21)
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• Network parameters  and  are fixed (e.g. random initializations)


• Optimizing over inputs — Adversarial example generation*


• Examples: Adversarial Attack over Data Transformations, Universal 
Perturbation over Multiple Examples, Ensemble Attack over Multiple Models

min
xAlice∈𝒟F
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xBob∈𝒟G

L(F(xAlice; θ), G(xBob; ϕ))

θ ϕ

*Adversarial attack generation empowered by min-max optimization (NeurIPS’21)



The Two Hidden Min-Max Settings
Setting 2: Neural Games




• Network parameters  and  are NOT fixed


• Models modern-day deep learning applications


• Examples: Generative Adversarial Networks, Adversarial Robustness, 
Robust Adversarial Reinforcement Learning, Distributionally Robust 
Optimization, Domain Invariant Representation Learning

min
θ∈ℝm

max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]
θF θG



The Two Hidden Min-Max Settings
Setting 2: Neural Games




• Network parameters  and  are NOT fixed


• Models modern-day deep learning applications


• Examples: Generative Adversarial Networks, Adversarial Robustness, 
Robust Adversarial Reinforcement Learning, Distributionally Robust 
Optimization, Domain Invariant Representation Learning

min
θ∈ℝm

max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]
θF θG



Back to our results
Setting 1: Input-Optimization Games




• We consider bilinear objective





We show that w.h.p. AltGDA converges to saddle point in  if the 
Gaussian-randomly-initialized mappings  and  (1-hidden-layer neural networks) 
satisfy


min
xAlice∈𝒟F

max
xBob∈𝒟G

L(F(xAlice; θF), G(xBob; θG))

F(xAlice; θ)⊤AG(xBob; ϕ)

ϵ− O(poly(1/ϵ))
F G

σ2
F/G = Θ̃1/σmax(A) (poly(

1
widthF

))

Open Question from NeurIPS 2019 



Back to our results
Setting 2: Neural Games




• We consider separable latent min-max objectives of the form





where  ( ) is hidden-strongly-convex (hidden-strongly-concave).


• Both  and  are 1-hidden-neural network with Gaussian random 
initializations.

min
θ∈ℝm

max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))]

𝔼(x,x′￼)∼Pxx′￼[ℓF(F(x; θ), x) + F(x; θ)⊤AG(x′￼; ϕ) − ℓG(G(x′￼; ϕ), x′￼)]
ℓF ℓG

F G



Back to our results
Setting 2: Neural Games




We show that w.h.p. AltGDA converges to a saddle point if the Gaussian-
random initializations and hidden-layer width of the networks  and  satisfy


min
θ∈ℝm

max
ϕ∈ℝn

𝔼(x,x′￼)∼Pxx′￼[L(F(x; θ), G(x′￼; ϕ))] (HSCSC*)

F G

σ1,F/G ⋅ σ2,F/G ≲
1

din,F/G ⋅ widthF/G

and widthF/G = Ω̃ (μ2
θ/ϕ

n3

din,F/G )
*HSCSC = Hidden-Strongly-Convex-Strongly-Concave



Proof Outline

1. Choose Gaussian random initializations  such that the Jacobian for 
networks  and  is “well-conditioned” w.h.p.


2. Define radius  of a Euclidean ball  such that the Jacobian 
remains well-conditioned within it.


3. Compute path length bound of AltGDA iterates  in terms of , a 
special Lyapunov potential at time .


4. Find sufficient conditions on hidden layer width of networks  to ensure 
this path length is smaller than the ball radius 

(θ0, ϕ0)
F G

R ℬ((θ0, ϕ0), R)

(θt, ϕt) P0
t = 0

F, G
R



Proof Outline (Remarks)

• Regarding (2.) and (4.):


• Similar analysis in case of  is easier and relies on careful selection 
of step-size instead.


• Staying within ball  -hidden-strongly-convex  PŁ-condition


• Why bother? -hidden-strongly-convex  -PŁ-condition

MIN

⟹ μ ⟹

μ ⟹ μσ2
min(J(θ))



Proof Outline (Remarks)

• Regarding (3.)—(4.):


•Lyapunov Potential  for min-max objective  with saddle point ( ):





• Intuitively, we are looking for  s.t. we are somewhat close to the saddle 
point to begin with.


• Finding the sufficient width to ensure staying within   crucially 
relies on the geometry of the input data ( )

Pt L(θ, ϕ) θ⋆, ϕ⋆

Pt := (max
ϕ

L(θt, ϕ) − L(θ⋆, ϕ⋆)) + λ (max
ϕ

L(θt, ϕ) − L(θt, ϕt))
(θ0, ϕ0)

ℬ((θ0, ϕ0), R)
σmax(X), σmin(X*t)



Proof Outline (Remarks)

• Regarding (3.)—(4.):





• Controlling  so that it’s small boils down to requiring the following:





• Recall that the min-max objective is HSCSC ( ). Another 
reason for why Jacobian singular values appear in analysis. (Chain rule!)

Pt := (max
ϕ

L(θt, ϕ) − L(θ⋆, ϕ⋆)) + λ (max
ϕ

L(θt, ϕ) − L(θt, ϕt))
P0

∥∇θL(θ0, ϕ0)∥ + ∥∇ϕL(θ0, ϕ0)∥ ≲ R2

L(θ, ϕ) = L(Fθ, Gϕ)



Proof Outline (Remarks)

• Regarding (3)—(4.):


• Ensuring potential  is “small” boils down to the following:





 


P0

σmax(J(θ0)) ⋅ (C1σmax(X) + C2) ≲ σ2
min(J(θ0))

⟺ width ≳
nμ2σ6

max(X)
σ4

min(X*t)
(n ≃ dt

in; t ≥ 2)

⟺ width = Ω̃ (μ2 n3

din ) (σmax(X) ≃
n

din
; σmin(X*t) ≃ 1)



Future Work

• The width (and hence the overparameterization) condition on the neural 
networks  is a sufficient condition. Is it also necessary?


• Analysis assumes differentiable activation functions (excluded ReLU, for 
example).


• Connect results with those for extensive-form games.


• Extend to Hidden MVIs for polyhedral settings

F, G



Thank you!


